Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 12, no. 3 | 93--104
Tytuł artykułu

Technical conditions of the unique structure of inverted siphon - history & present

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An inverted siphon is sometimes used to enable a watercourse to pass under an obstacle. Such solution is usually applied for irrigation and sewage canals, but it is rarely observed in the case of rivers. There are two such passages in Poland the bigger one is the Klodnica River siphon under the Gliwice Canal, commissioned in 1936. The first part of the paper presents the history of the Gliwice Canal and, simultaneously, of the Klodnica River siphon. The further part describes the structure of the siphon and its usage assumptions as well as the technical condition of the construction after nearly 80 years of operation, including inspection results concerning the underwater parts. The description is supplemented with results of chemical examinations. Basic repair recommendations are also provided.
Wydawca

Rocznik
Strony
93--104
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Associate Prof.; Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland, jacek.hulimka@polsl.pl
  • Assistant Prof.; Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] Mangus, A. (2014). Orthotropic Steel Decks. In: Superstructure Design. Bridge Engineering Handbook. Second Edition. Edited by Wai-Fah Chen and Lian Duan. CRC Press, Taylor & Francis Group, 589-645.
  • [2] Eckoldt, M. (1998). Rivers and channels. The history of the German waterways (Flüsse und Kanäle. Die Geschichte der deutschen Wasserstraßen) Hamburg: DSV-Verlag.
  • [3] Lavis, F. (1915). Building the New Rapid Transit System of New York City. New York: Hill Publishing Co.
  • [4] Stene, E. A. (1996). Yuma Project and Yuma Auxiliary Project. Bureau of Reclamation.
  • [5] Breen, J. J. (2017). Winchester Culvert: Location. Towpath topics. 55(2).
  • [6] Green, M. G. (1994). Construction of the San Antonio, Texas, Flood Control Tunnels. Environmental & Engineering Geosciences. XXXI(1), 15-31.
  • [7] Fu, H., Yang, K., Guo, X., Guo, Y. & Wang T. (2015). Safe operation of inverted siphon during ice period. Journal of Hydrodynamics. 27(2), 204-209.
  • [8] Ettema, R., Kirkil, G. & Day S. (2009). Frazil ice concerns for channel, pump-lines, penstocks, and tunnels in mountainous regions. Cold Regions Science and Technology. 55, 2002-2011.
  • [9] Chen, S. H. (2015). Irrigation and Drainage Works. In: Hydraulic Structures. Springer, Berlin, Heidelberg.
  • [10] Al-Husseini T. R. (2008). Optimum hydraulic design for inverted siphon. Al-Qadisiya Journal for Engineering Science. 1(1), 46-59.
  • [11] Aisenbrey A. J., et al., (1974). Design of small canal structures. Denver, Colorado, USA.
  • [12] Smith, N. A. F. (1976). Attitudes to Roman Engineering and the question of the Inverted Siphon. History of Technology, I, 45-71, London.
  • [13] Urbaniak, M. (2015). Hydrotechnical engineering works in Poland. Upper Silesian Canal (Dzieła hydrotechniki w Polsce. Kanał Górnośląski (Gliwicki)). Lodz: Publishing House Michał Kolinski.
  • [14] Tołkacz, L. (2010). Water transport infrastructure. Vol. 1: Infrastructure of inland transport (orig. Infrastruktura transportu wodnego. Tom I. Infrastruktura transportu śródlądowego). Szczecin (www.zbc.ksiaznica.szczecin.pl).
  • [15] Szling, Z., Winter, J. (1988). Inland waterways (Drogi wodne śródlądowe). Wroclaw: Publishing House of Wroclaw University of Science and Technology.
  • [16] www.kanalgliwicki.net/inne_obiekty/syfon/syfon.htm
  • [17] EN 12504-2:2001, Testing concrete in structures - Part 2: Non-destructive testing - Determination of rebound number.
  • [18] Claisse, P. (2016) Assessment of concrete structures. In: Civil Engineering Materials. ButterworthHeinemann.
  • [19] Balayssac, J-P., Garnier, V., (2018), Non-destructive Testing and Evaluation of Civil Engineering Structures. ISTE Press - Elsevier.
  • [20] EN 12504-1:2009, Testing concrete in structures - Part 1: Cored specimens - Taking, examining and testing in compression.
  • [21] Liu, J., Xing, F., Dong, B., Ma, H. & Pan, D. (2014). Study of Surface Permeability of Concrete under Immersion. Materials, 7, 876-886.
  • [22] EN 206-1:2000/A-2:2005, Concrete - specification, performance, production and conformity
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-beb378df-35e5-44d0-98b7-48ca11359fdf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.