Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 4 | 31--42
Tytuł artykułu

Development and validation of a wave-propelled semi-submersible unmanned vehicle

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ocean observation and exploration technologies are crucial for marine environmental protection and resource development, but traditional tools have limitations in terms of operating time, coverage, and cost. Wave gliders, which offer advantages such as long duration, wide range, and low cost, are a promising solution, but their low speed and weak manoeuvrability hinder their application, due to poor collision avoidance and survivability. This study proposes a novel wave-propelled semi-submersible unmanned vehicle (WPSUV) to overcome these disadvantages. The WPSUV features a submerged main structure for navigation and autonomous collision avoidance through rapid buoyancy adjustment. Modelling, computational hydrodynamic and motion simulations, and functional and performance testing at sea demonstrate the feasibility and superior performance of the WPSUV compared to conventional wave gliders. The proposed WPSUV significantly enhances collision avoidance through diving, reduced visual target and wind resistance with minimal structures above the waterline, and improved stability due to its lower centre of gravity. This slightly positively buoyant vehicle with a high lift-to-drag ratio can effectively harness wave kinetic energy and achieve favourable wave-following characteristics. In addition, the submerged main structure provides protection against surface hazards and allows for stealthy operation. This novel wave-propelled and near-surface unmanned underwater vehicle has the potential to revolutionise marine observation and exploration, and to enable safe, reliable, and long-term monitoring of the marine environment.
Wydawca

Rocznik
Tom
Strony
31--42
Opis fizyczny
Bibliogr. 24 poz., rys. tab.
Twórcy
  • School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology. Wuhan, Hubei, China
  • Qingdao Innovation and Development Center of Harbin Engineering University. Qingdao, Shandong, China
autor
  • School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology. Wuhan, Hubei, China, liweijia@hust.edu.cn
  • Yichang Testing Technique Research Institute. Yichang, Hubei, China
Bibliografia
  • 1. Palmer MR et al. Marine robots for coastal ocean research in the Western Indian Ocean. Ocean & Coastal Management 2021, 212, 105805. https://doi.org/10.1016/j.ocecoaman.2021.105805.
  • 2. Tian B, Guo J, Song Y, Zhou Y, Xu Z, Wang L. Research progress and prospects of gliding robots applied in ocean observation. Journal of Ocean Engineering and Marine Energy 2023, 9(1), 113-124. https://doi.org/10.1007/S40722-022-00247-W.
  • 3. Zereik E, Bibuli M, Mišković N, Ridao P, Pascoal A. Challenges and future trends in marine robotics. Annual Reviews in Control 2018, 46, 350-368. https://doi.org/10.1016/j.arcontrol.2018.10.002.
  • 4. Wang L, Li H. Dynamics and power performance of a novel wave-powered unmanned surface vehicle. Marine Structures 2024, 93, 103543. https://doi.org/10.1016/j.marstruc.2023.103543.
  • 5. Daniel T, Manley J, Trenaman N. The wave glider: Enabling a new approach to persistent ocean observation and research. Ocean Dynamics 2011, 61(10), 1509-1520. https://doi.org/10.1007/S10236-011-0408-5.
  • 6. Schmidt KM et al. Evaluation of satellite and reanalysis wind products with in situ wave glider wind observations in the Southern Ocean. Journal of Atmospheric & Oceanic Technology, 2017, 34(12), 2551-2568: JTECH-D-17-0079.1. https://doi.org/10.1175/jtech-d-17-0079.1.
  • 7. Thomson J et al. Measurements of directional wave spectra and wind stress from a wave glider autonomous Surface vehicle. Journal of Atmospheric and Oceanic Technology, 2018, (35)2, 347-363: jtech-d-17-0091.1. https://doi.org/10.1175/jtech-d-17-0091.1.
  • 8. Amiruddin, MS. Real-time Web GIS to monitor marine water quality using wave glider. IOP Conference Series: Earth and Environmental Science, 2016:012074. https://doi.org/10.1088/1755-1315/37/1/012074.
  • 9. Foster JH, Ericksen TL, Bingham B. Wave-glider-enhanced vertical seafloor geodesy. Journal of Atmospheric and Oceanic Technology 2020, 37(3), 417-427. https://doi.org/10.1175/jtech-d-19-0095.1.
  • 10. Anderson EE et al. Summer diatom blooms in the eastern North Pacific gyre investigated with a long-endurance autonomous surface vehicle. PeerJ, 2018, 6: e5387. https://doi.org/10.7717/peerj.5387.
  • 11. Zhang Y, Kieft B, Rueda C, O’Reilly T, Chavez F. Autonomous front tracking by a wave glider. Oceans 2016, 1-4. https://doi.org/10.1109/oceans.2016.7761070.
  • 12. Cherubin LM et al. Fish spawning aggregations dynamics as inferred from a novel, persistent presence robotic approach. Frontiers in Marine Science 2020, 6, 779. https://doi.org/10.3389/fmars.2019.00779.
  • 13. Lan H et al. Acoustical observation with multiple wave gliders for internet of underwater things. IEEE Internet of Things Journal 2020, 8(4): 2814-2825. https://doi.org/10.1109/jiot.2020.3020862.
  • 14. Yoon GH, Seo JW, Yoon HK. Dynamic control of an underwater vehicle near wave surface. Oceans 2018, MTS/IEEE Charleston, Charleston, SC, USA, 2018, pp. 1-7. https://doi.org/10.1109/oceans.2018.8604778.
  • 15. Gaafary MM. Motion of submerged submarine in the near surface lateral waves. Port-Said Engineering Research Journal 2021, 25(1), 66-74. https://doi.org/10.21608/pserj.2020.31103.1041.
  • 16. Zemlyak V, Pogorelova A, Kozin V. Motion of a submerged body in a near-surface water environment. International Journal of Naval Architecture and Ocean Engineering 2022, 14, 100433. https://doi.org/10.1016/j.ijnaoe.2021.100433.
  • 17. Carrica PM, Kim Y, Ezequiel Martin J. Near-surface self propulsion of a generic submarine in calm water and waves. Ocean Engineering 2019, 183, 87-105. https://doi.org/10.1016/j.oceaneng.2019.04.082.
  • 18. Burmeister H-C, Constapel M. Autonomous collision avoidance at sea: A survey. Frontiers in Robotics and AI 8, 2021, p. 739013. https://doi.org/10.3389/frobt.2021.739013.
  • 19. Wang P et al. Obstacle avoidance for environmentally-driven USVs based on deep reinforcement learning in large-scale uncertain environments. Ocean Engineering 2023, 270, 113670. https://doi.org/10.1016/j.oceaneng.2023.113670.
  • 20. Wang D et al. An obstacle avoidance strategy for the wave glider based on the improved artificial potential field and collision prediction model. Ocean Engineering 2020, 206, 107356. https://doi.org/10.1016/j.oceaneng.2020.107356.
  • 21. Sasano M et al. Development of a semi-submersible autonomous surface vehicle for control of multiple autonomous underwater vehicles. 2016 Techno-Ocean, Kobe, Japan, 2016, pp. 309-312. https://doi.org/10.1109/techno-ocean.2016.7890667.
  • 22. Xie X et al. Development, optimization, and evaluation of a hybrid passive buoyancy compensation system for underwater gliders. Ocean Engineering 2021, 242, 110115. https://doi.org/10.1016/j.oceaneng.2021.110115.
  • 23. Fossen TI. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons; 2011. https://doi.org/10.1002/9781119994138.
  • 24. Mouring SE et al. Design of a recovery system for the SV3 wave glider. OCEANS 2017, Anchorage, AK, USA, 2017, pp. 1-6. https://doi.org/10.23919/oceans.2017.8084937.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bea31ff8-e6db-43ab-ae2d-ed09d35c5e35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.