Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | z. 123 | 57--73
Tytuł artykułu

Using unmanned aerial vehicles in recognizing terrain anomalies encountered in the gas pipeline right-of-way (row)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the undertaken research was to characterize and evaluate the impact of weather and lighting conditions on recording terrain anomalies in the photographs obtained during a UAV photogrammetric flight. The present work describes the use and capabilities of the UAV in the mapping of photo acquisition conditions similar to those performed during inspection flights with the use of a manned helicopter equipped with a hyperspectral camera, in the target range of visible light. The research was conducted in the southern part of Poland (between Gliwice and Katowice), where 7 routes were selected, differing from one another in terms of terrain anomalies (buildings, types of land areas, vehicles, vegetation). In the studies, which involved photogrammetric flights performed using a UAV, different seasons and times of day as well as changes in light intensity were taken into account. The flight specification was based on the main parameters with the following assumptions: taking only perpendicular (nadir) RGB photographs, flight altitude 120 m AGL, strip width 160 m, GSD ≤0.04 m and overlap ≥83%. The analysis of the photographic material obtained made it possible to correct the catalog of anomalies defined previously, since the recognition of some objects is very difficult, being usually below the orthophotomap resolution. When making and evaluating orthophotomaps, problems with mapping the shape of objects near the edges of the frame were found. When a 12 mm lens is used, these distortions are significant. It was decided that for the purpose of generating training data from orthophotomaps, only the fragments containing objects which shape would be mapped in accordance with the real one would be used. Thus, the effective width of orthophotomaps obtained from simulated flights will be approximately 100 m.
Wydawca

Rocznik
Tom
Strony
57--73
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Zygmunta Krasińskiego Str. 8, 40-019 Katowice, Poland, jaroslaw.kozuba@polsl.pl
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Zygmunta Krasińskiego Str. 8, 40-019 Katowice, Poland, marek.marcisz@polsl.pl
  • Silesian University of Technology, Faculty of Mechanical Engineering, Konarskiego Str. 18A, 40-100 Gliwice, Poland, sebastian.rzydzik@polsl.pl
  • Silesian University of Technology, Faculty of Automatics, Electronics and Computer Science, Akademicka 16 Street, 44-100 Gliwice, Poland, marcin.paszkuta@polsl.pl
Bibliografia
  • 1. Balestrieri Eulalia, Pasquale Daponte, Luca De Vito, Francesco Lamonaca. 2021. „Sensors and Measurements for Unmanned Systems: An Overview”. Sensors 21: 1518. DOI: https://doi.org/10.3390/s21041518.
  • 2. Borkowski Grzegorz, Adam Młynarczyk. 2019. „Remote sensing using unmanned aerial vehicles for tourist-recreation lake valuation and development”. Quaestiones Geographicae 38(1): 5-14. ISSN 0137-477X, ISSN 2081-6383. DOI: 10.2478/quageo-2019-0012.
  • 3. Commission Delegated Regulation (EU) 2019/945 of 12 March 2019 on unmanned aircraft systems and on third-country operators of unmanned aircraft systems.
  • 4. Commission Implementing Regulation (EU) 2019/947 of 24 May 2019 on the rules and procedures for the operation of unmanned aircraft.
  • 5. Cramer Michael, Norbert Haala. 2010: „DGPF Project: Evaluation of digital photogrammetric aerial-based Imaging Systems – Overview and Results from the Pilot Centre”. Photogrammetric Engineering and Remote Sensing 76(9): 1019-1029. ISSN: 0099-1112.
  • 6. Ćwiąkała Paweł, Rafał Kocierz, Edyta Puniach, Michał Nędzka, Karolina Mamczarz, Witold Niewiem, Paweł Wiącek. 2018. „Assessment of the Possibility of Using Unmanned Aerial Vehicles (UAVs) for the Documentation of Hiking Trails in Alpine Areas”. Sensors 18: 81. DOI:10.3390/s18010081.
  • 7. Eisenbeiss Henri. 2009. „UAV photogrammetry”. PhD thesis, Zurich, Switzerland: ETH Zurich.
  • 8. Haala Norbert, Michael Cramer, Florian Weimer, Martin Trittler. 2011. „Performance test on UAV-based photogrammetric data collection”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-1/C22: 7-12. DOI: 10.5194/isprsarchives-XXXVIII-1-C22-7-2011.
  • 9. Honkavaara Eija, Heikki Saari, Jere Kaivosoja, Ilkka Pölönen, Teemu Hakala, Paula Litkey, Jussi Mäkynen, Liisa Pesonen. 2013. „Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture”. Remote Sensing 5: 5006-5039. ISSN 2072-4292. DOI: 10.3390/rs5105006.
  • 10. Jiménez-Jiménez Sergio Iván, Waldo Ojeda-Bustamante, Mariana de Jesús Marcial-Pablo, Juan Enciso. 2021. „Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy”. International Journal of Geo-Information 10: 3-4. DOI: https://doi.org/10.3390/ijgi10050285.
  • 11. Küng Olivier, Christoph Strecha, Antoine Beyeler, Jean-Christophe Zufferey, Dario Floreano, Pascal Fua, Francois Gervaix. 2011. „The accuracy of automatic photogrammetric techniques on ultra-light UAV imagery”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-1/C22: 125-130. DOI: 10.5194/isprsarchives-XXXVIII-1-C22-125-2011.
  • 12. Kurczyński Zdzisław, Krzysztof Bakuła, Marcin Karabin, Michał Kowalczyk, Jakub Stefan Markiewicz, Wojciech Ostrowski, Piotr Podlasiak, Dorota Zawieska. 2016. „The possibility of using images obtained from the UAS in cadastral works. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1: 909-915. DOI: 10.5194/isprs-archives-XLI-B1-909-2016.
  • 13. Li Minhui, Redmond Ramin Shamshiri, Michael Schirrmann, Cornelia Weltzien, Sanaz Shafian, Morten Stigaard Laursen. 2022. „UAV Oblique Imagery with an Adaptive Micro-Terrain Model for Estimation of Leaf Area Index and Height of Maize Canopy from 3D Point Clouds. Remote Sensing 14: 585. DOI: https://doi.org/10.3390/rs14030585.
  • 14. Mazzoleni Maurizio, Paolo Paron, Andrea Reali, Dinis Juizo, Josè Manane, Luigia Brandimarte. 2020. „Testing UAV-derived topography for hydraulic modelling in a tropical environment”. Natural Hazards 103: 139-163. DOI: https://doi.org/10.1007/s11069-020-03963-4.
  • 15. Pecho Pavol, Iveta Škvareková, Villiam Aţaltovič, Martin Bugaj. 2019. „UAV usage in the process of creating 3D maps by RGB spectrum”. Transportation Research Procedia 43: 328-333. DOI: 10.1016/j.trpro.2019.12.048.
  • 16. Popović Marija, Teresa Vidal-Calleja, Gregory Hitz, Jen Jen Chung, Inkyu Sa, Roland Siegwart, Juan Nieto. 2020. „An informative path planning framework for UAV-based terrain monitoring”. Autonomous Robots 44: 889-911. DOI: https://doi.org/10.1007/s10514-020-09903-2.
  • 17. Remondino Fabio, Luigi Barazzetti, Francesco Nex, Marco Scaoioni, Daniele Sarazzi. 2011. „UAV photogrammetry for mapping and 3d modelling-current status and future perspetives”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-1/C22: 25-29. DOI: 10.5194/isprsarchives-XXXVIII-1-C22-25-2011.
  • 18. Rochala Zdzisław. 2011. „On board data acquisition system with intelligent transducers for unmanned aerial vehicles”. Archives of Transport 23 (4): 521-529. DOI: 10.2478/v10174-011-0035-4.
  • 19. Rosnell Tomi, Eija Honkavaara, Kimmo Nurminen. 2011. „On geometric processing of multi-temporal image data collected by light UAV systems”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-1/C22: 63-68. DOI: 10.5194/isprsarchives-XXXVIII-1-C22-63-2011.
  • 20. Sauerbier Martin, Emil Siegrist, Henri Eisenbeiss, Nusret Demir. 2011. „The practical application of UAV-based photogrammetry under economic aspects”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-1/C22: 45-50. DOI: 10.5194/isprsarchives-XXXVIII-1-C22-45-2011.
  • 21. Sawicki Piotr. 2012. „Unmanned aerial vehicles in photogrammetry and remote sensing – state of the art and trends”. Archiwum Fotogrametrii, Kartografii i Teledetekcji 23: 365-376. ISSN 2083-2214. ISBN 978-83-61576-19-8.
  • 22. Szczechowski Bogdan. 2008. „The use of unmanned aerial vehicles (mini helicopters) in photogrammetry from low level”. Archiwum Fotogrametrii, Kartografii i Teledetekcji 18: 569-579. ISBN 978-83-61576-08-2.
  • 23. Tahar Khairul Nizam. 2012. „Aerial terrain mapping using unmanned aerial vehicle approach”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 29: 493-498. DOI: 10.5194/isprsarchives-XXXIX-B7-493-2012.
  • 24. Ułanowicz Leszek, Ryszard Sabak. 2021. „Unmanned aerial vehicles supporting imagery intelligence using the structured light technology”. Archives of Transport 58 (2): 35-45. DOI: 10.5604/01.3001.0014.8796.
  • 25. Žabota Barbara, Milan Kobal. 2021. „Accuracy Assessment of UAV-Photogrammetric-Derived Products Using PPK and GCPs in Challenging Terrains: In Search of Optimized Rockall Mapping”. Remote Sensing 13: 3812. DOI: https://doi.org/10.3390/rs13193812.
  • 26. Zhang Chunhua, John Michael Kovacs. 2012. „The application of small unmanned aerial systems for precision agriculture: a review”. Precision Agriculture 13: 693-712. DOI: 10.1007/s11119-012-9274-5.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-be999523-bc29-4cde-8f4a-17dea6b9ccae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.