Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 73, nr 2 | 69--81
Tytuł artykułu

Comparative analysis of mechanical properties of scaffolds sintered from Ti and Ti6Al4V powders

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the article is to present and compare the results of studies into mechanical properties, including mainly tensile and compressive strength of scaffolds fabricated from Ti and Ti6Al4V in Selective Laser Sintering (SLS) for specific sintering conditions. Design/methodology/approach: Titanium scaffolds characterised by the different size of pores were fabricated on the basis of 3D CAD models of samples for tensile and compressive strength examinations prepared with AutoFab software for a selected unit cell. The so prepared samples were subject to tensile and compressive strength examinations with a universal tensile testing machine Zwick 020. Findings: The results of examinations of mechanical properties of pristine titanium and its alloy Ti6Al4 showing differences in the strength of the two materials and allowing to characterise each of them. The size of pores and the shape and manner of arrangement of a unit cell building the scaffold influences substantially the strength properties of titanium scaffolds. Practical implications: The scaffolds with specific strength properties fabricated in the SLS process create conditions for their application in dental engineering and in jaw-face reconstructions. Originality/value: The original results of tensile and compressive strength examinations of the created scaffolds. The innovative application of the rapid manufacturing technology for the purpose of regenerative medicine may greatly influence the development of this field of medicine.
Wydawca

Rocznik
Strony
69--81
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • anna.achtelik-franczak@polsl.pl
  • Center of Medicine and Dentistry Sobieski, Jana III Sobieskiego 12/1, 44-100 Gliwice, Poland
Bibliografia
  • [1] L. Lu, J. Fuh, Y. Wong, Laser Induseed Materials and Processes for Rapid Prototyping, Kluwer Publishers, Dordrecht, 2001.
  • [2] S. Kumar, Selective Laser Sintering: A Qualitative and Objective Approach, Modeling and Characterization (2003) 43-47.
  • [3] M. Miecielica, Rapid Prototyping Technologies, PM 2 (2010) 39-45.
  • [4] M. Klimek, The use of SLS technology in making permanent dental restorations, Prosthetics 12 (2012) 47-55 (in Polish).
  • [5] L.S. Bertol, W.K. Junior, F.P. da Silva, C.A. Kopp, Medical design: Direct metal laser sintering of Ti-6Al-4V, Materials and Design 31 (2010) 3982-3988.
  • [6] L. Ciocca, M. Fantini, F. De Crescenzio, G. Corinaldesi, R. Scott, Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches, Medical and Biological Engineering and Computing 49 (2011) 1347-1352.
  • [7] P.A. Mazzoli, Selective laser sintering in biomedical engineering, Medical & Biological Engineering and Computing 51 (2013) 245-256.
  • [8] A. Bandyopadhyay, F. Espana , V.K. Balla , S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta Biomaterialia 6 (2010) 1640-1648.
  • [9] S. Van Bael, Y.C. Chai, S. Truscello, et al., The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta Biomateralia 8/7 (2012) 2824-2834.
  • [10] I.V. Shishkovsky, V. Scherbakov, Selective laser sintering of biopolymers with micro and nano ceramic additives for medicine Physics Procedia 39 (2012) 491-499.
  • [11] L.A. Dobrzański, Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scaffolds engineering for regenerative medicine, Archives of Materials Science and Engineering 69/2 (2014) 53-80.
  • [12] R. Melechow, K. Tubielewicz, W. Błaszczyk, Titanium and its alloys: types, properties, applications, treatmant technology, degradation, PC Press, Częstochowa, 2004 (in Polish).
  • [13] L.A. Dobrzański, Fundamentals of materials science, Silesian University of Technology Press, Gliwice, 2012 (in Polish).
  • [14] L.A Dobrzański, Descriptive metallurgy of non-ferrous metal alloys, Wydawnictwo Politechniki Śląskiej, Gliwice, 2009 (in Polish).
  • [15] A. Nouri, P.D. Hodgson, C. Wen, Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications, Biomimetics, Learning from Nature, Australia (2010) 415-450.
  • [16] S.W. Kim, H.D. Jung, M.H. Kang, H.E. Kim, Y.H. Koh, Y. Estrin, Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer, Materials Science and Engineering C 33/5 (2013) 2808-2815.
  • [17] Y. Wang, Y. Shen, Z. Wang, J. Yang, et al, Development of highly porous titanium scaffolds by selective laser melting, Materials Letters 64 (2010) 674-676.
  • [18] G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials 27 (2006) 2651-2670.
  • [19] S.J. Simske, R.A. Ayers, T.A. Bateman, Porous materials for bone engineering, Materials Science Forum 250 (1997) 151-182.
  • [20] L. M. R. de Vasconcellos, M. V. de Oliveira, M. L. de Alencastro Graca, Porous Titanium Scaffolds Produced by Powder Metallurgy for Biomedical Applications, Materials Research 11/3 (2008) 275-280.
  • [21] Z. Esen, S. Bor, Processing of titanium foams using magnesium spacer particles, Scripta Materialia 56 (2007) 341-344.
  • [22] M. Bram, H. Schiefer, D. Bogdanski, M. Koller, H.P. Buchkremer, D. Stover, Implant surgery, How bone bonds to PM titanium? Metal Powder Report 61 (2006) 26-31.
  • [23] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik-Franczak, Selective Laser Sintering and Melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials 60/3 (2015) 2039-2045.
  • [24] W. Xue, B.V. Krishna, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomaterialia 3 (2007) 1007-1018.
  • [25] M. Bram, C. Stiller, H.P. Buchkremer, D. Stover, H. Baur, High-porosity titanium, stainless steel, and superalloy parts, Advanced Engineering Materials 2 (2000) 196 -199.
  • [26] B. Dąbrowski, W. Świeszkowski, D. Godliński, K.J. Kurzydlowski, Highly porous titanium scaffolds for orthopaedic applications, Journal of Biomedical Materials Research B 95B/1 (2010) 53-61.
  • [27] R.C. Thomson, M.C. Wake, M.J. Yaszemski, A.G. Mikos, Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science 122 (1995) 245-274.
  • [28] M. Veiseh, D. Edmondson, Bone as an Open Cell Porous Material, ME 599K: Special Topics in Cellular Solids, 2003.
  • [29] A. Laptev, O. Vyal, M. Bram, H.P. Buchkremer, D. Stöver, Green strength of powder compacts provided for production of highly porous titanium parts, Powder Metallurgy 48 (2005) 358-364.
  • [30] Z. Esen, S. Bor, Processing of titanium foams using magnesium spacer particles, Scripta Materialia 56 (2007) 341-344.
  • [31] A. Bansiddhi, D.C. Dunand, Shape-memory NiTi foams produced by solid-state replication with NaF. Intermetallics 15 (2007) 1612-1622.
  • [32] A. Bansiddhi, D.C. Dunand, Shape-memory NiTi foams produced by replication of NaCl space-holders, Acta Biomateralia 4 (2008) 1996-2007.
  • [33] L.A. Dobrzański, A. Achtelik-Franczak, M. Król, Computer Aided Design in Selective Laser Sintering (SLS) - application in medicine, Journal of Achievements in Materials and Manufacturing Engineering 60/2 (2013) 66-75.
  • [34] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, et al., Fabrication of scaffolds from Ti6Al4V powders using the computer aided laser method, Archives of Metallurgy and Materials 60/2 (2015) 1065-1070.
  • [35] L.A. Dobrzański, R. Nowosielski, Test methods of metals and alloys: physical properties studies, WNT Press, Warszawa, 1987.
  • [36] Material Safety Data Sheet of CP Titanium, Kamb.
  • [37] Material Safety Data Sheet of Ti6Al4V, Kamb.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-be6b4328-45b4-4fbd-b42b-a9b127d83e29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.