Warianty tytułu
Języki publikacji
Abstrakty
The paper aims to identify how digital transformation and Generative Artificial Intelligence (GAI), in particular, affect the manufacturing processes. Several dimensions of the Industry 4.0 field have been considered, such as the design of new products, workforce and skill optimisation, enhancing quality control, predictive maintenance, demand forecasting, and marketing strategy. The paper adopts qualitative research based on a critical review approach. It provides evidence of the GAI technology support in the mentioned areas. Appropriate use of emerging technology allows managers to transform manufacturing by optimising processes, improving product design, enhancing quality control, and contributing to overall efficiency and innovation in the industry. Simultaneously, GAI technologies facilitate predictive analytics to forecast and anticipate future demand, quality issues, and potential risks, improve a marketing strategy and identify market trends.
Rocznik
Tom
Strony
76--89
Opis fizyczny
Bibliogr. 81 poz., tab.
Twórcy
autor
- National Economics University, Hanoi, Vietnam
autor
- Brno University of Technology, Czechia
autor
- Bialystok University of Technology, Poland, j.ejdys@pb.edu.pl
autor
- Mykolas Romeris University, Lithuania
autor
- Kozminski University, Poland
autor
- Kozminski University, Poland
autor
- Warsaw University of Life Sciences, Poland
autor
- Krakow University of Economics, Poland
autor
- University of Economics in Katowice, Poland
Bibliografia
- Abolghasemi, M., Hurley, J., Eshragh, A., & Fahimnia, B. (2020). Demand forecasting in the presence of systematic events: Cases in capturing sales promotions. International Journal of Production Economics, 230. doi: 10.1016/j.ijpe.2020.107892
- Achouch, M., Dimitrova, & M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Applied Sciences, 12(16), 8081. doi: 10.3390/app12168081
- Adel, A. (2022). Future of industry 5.0 in society: Humancentric solutions, challenges and prospective research areas. Journal of Cloud Computing, 11, 1-15. doi: 10.1186/s13677-022-00314-5
- Allahloh, A. S., Sarfraz, M., Ghaleb, A. M., Al-Shamma’a, A. A., Hussein Farh, H. M., & Al-Shaalan, A. M. (2023). Revolutionizing IC Genset Operations with IIoT and AI: A Study on Fuel Savings and Predictive Maintenance. Sustainability 15(11), 8808. doi: 10.3390/su15118808
- Arena, F., Collotta, M., Luca L., Ruggieri, M., & Termine, F. G. (2022). Predictive Maintenance in the Automotive Sector: A Literature Review. Mathematical and Computational Applications 27(1), 2. doi: 10.3390/mca27010002
- Budhwar, P., Chowdhury, S., Wood, G., Aguinis, H., Bamber, G. J., Beltran, J. R., Boselie, P., Lee Cooke, F., Decker, S., & Denisi, A. (2023). Human resource management in the age of generative artificial intelligence: Perspectives and research directions on ChatGPT. Human Resource Management Journal, 33, 606-659. doi: 10.1111/1748-8583.12524
- Cappa, F., Oriani, R., Peruffo, E., & McCarthy, I. (2021). Big data for creating and capturing value in the digitalized environment: unpacking the effects of volume, variety, and veracity on firm performance. Journal of Production and Innovation Management, 38, 49-67. doi: 10.1111/jpim.12545
- Cha, J.-H., Jeong, H.-G., Han, S.-W., Kim, D.-C., Oh, J.-H., Hwang, S.-H., & Park, B.-J. (2023). Development of MLOps Platform Based on Power Source Analysis for Considering Manufacturing Environment Changes in Real-Time Processes. In International Conference on Human-Computer Interaction (pp. 224–236). Springer.
- Chang, Y.-L., & Ke, J. (2023). Socially Responsible Artificial Intelligence Empowered People Analytics: A Novel Framework Towards Sustainability. Human Resource Development Review, 15344843231200930.
- Conboy, K., Mikalef, P., Dennehy, D., & Krogstie, J. (2020). Using business analytics to enhance dynamic capabilities in operations research: A case analysis and research agenda. European Journal of Operational Research, 281(3), 656-672. doi: 10.1016/j. ejor.2019.06.051
- De Mauro, A., Sestino, A., & Bacconi, A. (2022). Machine learning and artificial intelligence use in marketing: a general taxonomy. Italian Journal of Marketing, 439-457. doi: 10.1007/s43039-022-00057-w
- Dencheva, V. (2023). Share of marketers using generative artificial intelligence (AI) in their companies in the United States as of March 2023. Retrieved from https://www.statista.com/statistics/1388390/generative-ai-usage-marketing/
- Di Vaio, A., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: a systematic literature review. Journal of Business Research, 121, 283-314. doi: 10.1016/j.jbusres.2020.08.019
- Dwivedi, Y. K., Sharma, A., Rana, N. P., Giannakis, M., Goel, P., & Dutot, V. (2023). Evolution of artificial intelligence research in Technological Forecasting and Social Change: Research topics, trends, and future directions. Technological Forecasting and Social Change, 192. doi: 10.1016/j.techfore.2023.122579
- Dworski, B. (2023). C-store retailers weigh in on automation, AI and data challenges. Retrieved from https://www.cstoredive.com/news/c-store-retailers-weighin-on-automation-ai-and-data-challenges/650008/
- Ghosh, S. (2022). COVID-19, clean energy stock market, interest rate, oil prices, volatility index, geopolitical risk nexus: evidence from quantile regression. Journal of Economics and Development. doi: 10.1108/jed-04-2022-0073
- Global Data. (2023). The impact of artificial intelligence in the consumer goods sector. Retrieved from https:// just-drinks.nridigital.com/just_drinks_magazine_ aug23/artificial-intelligence-impact-consumergoods-industry
- Głodowska, A., Maciejewski, M., & Wach, K. (2023). Navigating the digital landscape: A conceptual framework for understanding digital entrepreneurship and business transformation. International Entrepreneurship Review, 9(4), 7-20. doi: 10.15678/IER.2023.0904.01
- Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119-132. doi: 10.1016/j.ijin.2022.08.005
- Haponik, A. (2022). How AI improves productivity in manufacturing companies? Retrieved from https://addepto.com/blog/how-ai-improves-productivityin-manufacturing-companies/
- Hartung, J., Dold, P. M., Jahn, A., & Heizmann, M. (2022). Analysis of AI-Based Single-View 3D Reconstruction Methods for an Industrial Application. Sensors, 22, 6425. doi: 10.3390/s22176425
- Heuser, P., Letmathe, P., & Schinner, M. (2022). Workforce planning in production with flexible or budgeted employee training and volatile demand. Journal of Business Economics, 92, 1093-1124. doi: 10.1007/s11573-022-01090-z
- Hrnjica, B., & Softic, S. (2020). Explainable AI in Manufacturing: A Predictive Maintenance Case Study. In IFIP International Conference on Advances in Production Management Systems (APMS), (pp. 66–73). Novi Sad, Serbia.
- Hu, X., Liu, A., Li, X., Dai, Y., & Nakao, M. (2023). Explainable AI for customer segmentation in product development. CIRP Annals, 72(1), 89-92. doi: 10.1016/j.cirp.2023.03.004
- Hull, B. (2011). Manufacturing Best Practices: Optimizing Productivity and Product Quality. Hoboken, New Jersey, USA: John Wiley & Sons.
- Hyun Baek, T., & Kim, M. (2023). Ai robo-advisor anthropomorphism: The impact of anthropomorphic appeals and regulatory focus on investment behaviors. Journal of Business Research, 164. doi: 10.1016/j.jbusres.2023.114039
- Iansiti, M., & Lakhani, K. R. (2020). Competing in the Age of AI. Boston, MA.
- Katreddi, S., Kasani, S., & Thiruvengadam, A. (2022). A Review of Applications of Artificial Intelligence in Heavy Duty Trucks. Energies, 15(20), 7457. doi: 10.3390/en15207457
- Khang, A., Rani, S., Gujrati, R., Uygun, H., & Gupta, S. K. (2023). Designing Workforce Management Systems for Industry 4.0: Data-Centric and AIEnabled Approaches (1st ed.). CRC Press. doi: 10.1201/9781003357070
- Koole, G. M., & Li, S. (2023). A practice-oriented overview of call center workforce planning. Stochastic Systems. doi: 10.1287/stsy.2021.0008
- Korzynski, P., Kozminski, A. K., & Baczynska, A. (2023). Navigating leadership challenges with technology: Uncovering the potential of ChatGPT, virtual reality, human capital management systems, robotic process automation, and social media. International Entrepreneurship Review, 9(2), 7-18. doi: 10.15678/IER.2023.0902.01
- Korzynski, P., Mazurek, G., Altmann, A., Ejdys, J., Kazlauskaite, R., Paliszkiewicz, J., Wach, K., & Ziemba, E. (2023). Generative artificial intelligence as a new context for management theories: analysis of Chat- GPT. Central European Management Journal, 31(1). doi: 10.1108/CEMJ-02-2023-0091
- Kshetri, N., Dwivedi, Y. K., Davenport, T. H., & Panteli, N. (2023). Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. International Journal of Information Management, 102716. doi: 10.1016/j.ijinfomgt.2023.102716
- Kumar, A., Gupta, N., & Bapat, G. (2023). Who is making the decisions? How retail managers can use the power of ChatGPT. Journal of Business Strategy. doi:10.1108/jbs-04-2023-0067
- Kwong, C. K., Jiang, H., & Luo, X. G. (2016). AI-based methodology of integrating affective design, engineering, and marketing for defining design specifications of new products. Engineering Applications of Artificial Intelligence, 47(10), 49-60. doi: 10.1016/j.engappai.2015.04.001
- LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21-32.
- Lei, Y., Vyas, S., Gupta, S., & Shabaz, M. (2022). AI based study on product development and process design. International Journal of System Assuring Engineering Management, 13(1), 305-311. doi: 10.1007/s13198-021-01404-4
- Leng, J., Sha, W., Wang, B., Zheng, P., Zhuang, C., Liu, Q., Wuest, T., Mourtzis, D., & Wang, L. (2022). Industry 5.0: Prospect and retrospect. Journal of Manufacturing Systems, 65, 279-295. doi: 10.1016/j.jmsy.2022.09.017
- Li, X., Pan, L., Zhou, Y., Wu, Z., & Luo, S. (2022). A Temporal– Spatial network embedding model for ICT supply chain market trend forecasting. Applied Soft Computing, 125. doi: 10.1016/j.asoc.2022.109118
- Liu, B., Song, C., Liang, X., Lai, M., Yu, Z., & Ji, J. (2023). Regional differences in China’s electric vehicle sales forecasting: Under supply-demand policy scenarios. Energy Policy, 177. doi: 10.1016/j.enpol.2023.113554
- Liu, C., Tian, W., & Kan, Ch., (2022). When AI meets additive manufacturing: Challenges and emerging opportunities for human-centered products development. Journal of Manufacturing Systems, 64, 648-656. doi: 10.1016/j.jmsy.2022.04.010
- Liyanage, S., Abduljabbar, R., Dia, H., & Tsai, P.-W. (2022). AI-based neural network models for bus passenger demand forecasting using smart card data. Journal of Urban Management, 11(3), 365-380. doi: 10.1016/j.jum.2022.05.002
- Ma, S., Fildes, R., & Huang, T. (2016). Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information. European Journal of Operational Research, 249(1), 245-257. doi: 10.1016/j.ejor.2015.08.029
- Mariani, M. M., Machado, I., Magrelli, V., & Dwivedi, Y. K. (2023). Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. Technovation, 122, 102623. doi: 10.1016/j.technovation.2022.102623
- Mathur, S., Kumar, D., Kumar, V., Dantas, A., Verma, R., & Kuca, K. (2023). Xylitol: Production strategies with emphasis on biotechnological approach, scale up, and market trends. Sustainable Chemistry and Pharmacy, 35. doi: 10.1016/j.scp.2023.101203
- Mazumdar, T., Raj, S. P., & Sinha, I. (2005). Reference price research: Review and propositions. Journal of Marketing, 69, 84-102. doi: 10.1509/jmkg.2005.69.4.84.
- Mazurek, G. (2018). Internet Rzeczy a cyfrowa transformacja – implikacje dla marketingu B2C [The Internet of Things and digital transformation - implications for B2C marketing]. In L. Sułkowski, & D. Kaczorowska-Spychalska (Eds.). Nowy paradygmat rynku [A new market paradigm], (pp. 33–57), Warsaw, Poland: Difin.
- Nadira, K. (2023). Implementing AI-Automation in Manufacturing for Product Quality Assurance. Retrieved from https://gleematic.com/implementing-ai-automation-in-manufacturing-for-product-qualityassurance/
- Narasimhan, S. (2023). How AI & ML are Revolutionizing Product Quality Control. Retrieved from https://www.hurix.com/how-ai-ml-are-revolutionizingproduct-quality-control/
- Njomane, L., & Telukdarie, A. (2022). Impact of COVID-19 food supply chain: Comparing the use of IoT in three South African supermarkets. Technology in Society, 71, 102051. doi: 10.1016/j.techsoc.2022.102051
- Nosalska, K., Piatek, Z. M., Mazurek, G., & Rzadca, R. (2018). Industry 4.0: coherent definition framework with technological and organizational interdependencies. Journal of Manufacturing Technology Management, 31(5), 837-862. doi: 10.1108/JMTM-08-2018-0238
- Ooi, K. B., Wei-Han Tan, G., Al-Emran, M., Al-Sharafi, M., Capatina, A., Chakraborty, A., Dwivedi, Y. K., Huang, T.-L., Kumar Kar, A., Lee, V. H., Loh, X.-M., Micu, A., Mikalef, P., Mogaji, E., Pandey, N., Raman, R., Rana, N. P., Sarker, P., Sharma, A., Teng, Ch., Wamba F. S., & Wong, L.-W. (2023). The Potential of Generative Artificial Intelligence Across Disciplines: Perspectives and Future Directions. Journal of Computer Information Systems. doi: 10.1080/08874417.2023.2261010
- Open AI. (2023). Introducing ChatGPT and Whisper APIs. Retrieved from https://openai.com/blog/introducing- chatgpt-and-whisper-apis
- Palmatier, R. W., Houston, M. B., & Hulland, J. (2018). Review articles: Purpose, process, and structure. Journal of the Academy of Marketing Science, 46, 1-5. doi: 10.1007/s11747-017-0563-4
- Pandey, R., Uziel, S., Hutschenreuther, T., & Krug, S. (2023) Towards Deploying DNN Models on Edge for Predictive Maintenance Applications. Electronics, 12(3), 639. doi. 10.3390/electronics12030639
- Plantec, Q., Deval, M.-A., Hooge, S., & Weil, B. (2023). Big data as an exploration trigger or problem-solving patch: Design and integration of AI-embedded systems in the automotive industry. Technovation, 124, 102763. doi: 10.1016/j.technovation.2023.102763
- Raja, A. (2023). How Generative AI can enhance the Manufacturing Industries? Retrieved from https:// www.linkedin.com/pulse/how-generative-ai-canenhance-manufacturing-industries-raja/
- Rossini, R., Prato, G., Conzon, D., Pastrone, C., Pereira, E., Reis, J., Goncalves, G., Henriques, D., Santiago, A. R., & Ferreira, A. (2021). AI environment for predictive maintenance in a manufacturing scenario. In2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), (pp. 1-8). Vasteras, Sweden. doi: 10.1109/ETFA45728.2021.9613359
- Rymarczyk, J. (2021). The impact of Industrial Revolution 4.0 on international trade. Entrepreneurial Business and Economics Review, 9(1), 105-117. doi: 10.15678/EBER.2021.090107
- Shin, W., Han, J., & Rhee, W. (2021). AI-assistance for predictive maintenance of renewable energy systems. Energy, 221, 119775. doi: 10.1016/j.energy.2021.119775.
- Sigov, A., Ratkin, L., Ivanov, L. A., & Xu, L. D. (2022). Emerging Enabling Technologies for Industry 4.0 and Beyond. Information Systems Frontiers. doi: 10.1007/s10796-021-10213-w
- Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263-286. doi: 10.1016/j.jbusres.2016.08.001
- Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, Elsevier, 104(C), 333-339. doi: 10.1016/j.jbusres.2019.07.039
- Sohrabpour, V., Oghazi, P., Toorajipour, R., & Nazarpour, A. (2021). Export sales forecasting using artificial intelligence. Technological Forecasting and Social Change, 163. doi: 10.1016/j.techfore.2020.120480
- Soori, M., Arezoo, B., & Dastres, R. (2023). Internet of things for smart factories in industry 4.0, a review. Internet of Things and Cyber-Physical Systems, 3, 192- 204. doi: 10.1016/j.iotcps.2023.04.006
- Srivastava, S. (2023). How AI is Proving as a Game Changer in Manufacturing – Use Cases and Examples. Retrieved from https://appinventiv.com/blog/ai-inmanufacturing/
- Tadayonrad, Y., & Ndiaye, A. B. (2023). A new key performance indicator model for demand forecasting in inventory management considering supply chain reliability and seasonality. Supply Chain Analytics, 3. doi: 10.1016/j.sca.2023.100026
- Tadayonrad, Y., & Ndiaye, A. B. (2023). A new key performance indicator model for demand forecasting in inventory management considering supply chain reliability and seasonality. Supply Chain Analytics, 3. doi: 10.1016/j.sca.2023.100026
- Theissler, A., Perez-Velazquez, J., Kettelgerdes, M., & Elger, G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability Engineering & System Safety, 215, 107864. doi: 10.1016/j.ress.2021.107864
- Vaddi, K., & Khan, M. (2023). A New Era of Quality Assurance – Role of Generative AI in Reshaping Software Testing. Retrieved from https://www.encora.com/insights/a-new-era-of-qa-role-of-generative-ai-inreshaping-software-testing
- Vaid, S., Puntoni, S., & Khodr, A. (2023). Artificial intelligence and empirical consumer research: A topic modeling analysis. Journal of Business Research, 166. doi: 10.1016/j.jbusres.2023.114110
- Villar, A., Paladini, S., & Buckley, O. (2023). Towards Supply Chain 5.0: Redesigning Supply Chains as Resilient, Sustainable, and Human-Centric Systems in a Post-pandemic World. Operational Research Forum, 4, 60. doi: 10.1007/s43069-023-00234-3
- Viverit, L., Heo, C. Y., Pereira, L. N., & Tiana, G. (2023). Application of machine learning to cluster hotel booking curves for hotel demand forecasting. International Journal of Hospitality Management, 111. doi: 10.1016/j.ijhm.2023.103455
- Wach, K., Duong, C. D., Ejdys, J., Kazlauskaitė, R., Korzynski, P., Mazurek, G., Paliszkiewicz, J., & Ziemba, E. (2023). The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business and Economics Review, 11(2), 7-30. doi: 10.15678/EBER.2023.110201
- Wang, G., Ledwoch, A., Hasani, R. M., Grosu, R., & Brintrup, A. (2019). A generative neural network model for the quality prediction of work in progress products. Applied Soft Computing, 85, 105683. doi: 10.1016/j.asoc.2019.105683
- Wang, T., & Wu, D. (2024). Computer-Aided Traditional Art Design Based on Artificial Intelligence and Human-Computer Interaction. Computer-Aided Design and Applications, 21(S7), 59-73. doi: 10.14733/cadaps.2024.S7.59-73
- Wlodarczyk, S. (2023). How Generative AI will transform manufacturing. Retrieved from https://aws.amazon.com/blogs/industries/generative-ai-in-manufacturing/
- Xu, Q., Dong, J., Peng, K., & Yang, X. (2024). A novel method of neural network model predictive control integrated process monitoring and applications to hot rolling process. Expert Systems With Applications, 237, 121682. doi: 10.1016/j.eswa.2023.121682
- Yaiprasert, C., & Hidayanto, A. N. (2023). AI-driven ensemble three machine learning to enhance digital marketing strategies in the food delivery business. Intelligent Systems with Applications, 18. doi: 10.1016/j.iswa.2023.200235
- Zeng, W., Wang, J., Zhang, Y., Han, Y., & Zhao, Q. (2022). DDPG-based continuous thickness and tension coupling control for the unsteady cold rolling process. The International Journal of Advanced Manufacturing Technology, 120(11-12), 7277-7292. doi: 10.1007/s00170-022-09239-4
- Zhu, Y., Zhang, J., Wu, J., & Liu, Y. (2022). AI is better when I’m sure: The influence of certainty of needs on consumers’ acceptance of AI chatbots. Journal of Business Research, 150, 642-652. doi: 10.1016/j.jbusres.2022.06.044
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-be521eb5-a1ac-4f02-95ee-209384384918