Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 34, No. 1 | 169--176
Tytuł artykułu

VO2(B) conversion to VO2(A) and VO2(M) and their oxidation resistance and optical switching properties

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vanadium dioxide VO2 has been paid in recent years increasing attention because of its various applications, however, its oxidation resistance properties in air atmosphere have rarely been reported. Herein, VO2 (B) nanobelts were transformed into VO2 (A) and VO2 (M) nanobelts by hydrothermal route and calcination treatment, respectively. Then, we comparatively studied the oxidation resistance properties of VO2 (B), VO2 (A) and VO2 (M) nanobelts in air atmosphere by thermo-gravimetric analysis and differential thermal analysis (TGA/DTA). It was found that the nanobelts had good thermal stability and oxidation resistance below 341 degrees C, 408 degrees C and 465 degrees C in air, respectively, indicating that they were stable in air at room temperature. The fierce oxidation of the nanobelts occurred at 426, 507 and 645 degrees C, respectively. The results showed that the VO2 (M) nanobelts had the best thermal stability and oxidation resistance among the others. Furthermore, the phase transition temperatures and optical switching properties of VO2 (A) and VO2 (M) were studied by differential scanning calorimetry (DSC) and variable-temperature infrared spectra. It was found that the VO2 (A) and VO2 (M) nanobelts had outstanding thermochromic character and optical switching properties.
Wydawca

Rocznik
Strony
169--176
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • School of Chemistry, Dalian University of Technology, Dalian 116024, PR China, yfzhang@dlut.edu.cn
Bibliografia
  • 1. Zhang Y., Zhang J., Zhang X., Mo S., Wu W., Niu F., Zhong Y., Liu X., Huang C., Liu X., J. Alloys Compd., 570 (2013), 104.
  • 2. Zhang Y., Wang N., Huang Y., Huang C., Mei X., Meng C., Mater Sci.-Poland, 32 (2014), 236.
  • 3. Strelcov E., Lilach Y., Kolmakov A., Nano Lett., 9 (2009), 2322.
  • 4. Zhang Y., Fan M., Liu X., Huang C., Li H., Eur. J. Inorg. Chem., 2012 (2012), 1650.
  • 5. Zhang Y., Fan M., Wu W., Hu L., Zhang J., Mao Y., Huang C., Liu X., Mater. Lett., 71 (2012), 127.
  • 6. Parkin I.P., Manning T.D., J. Chem. Educ., 83 (2006), 393.
  • 7. Zhang Y., Liu X., Chen D., Yu L., Nie J., Yi S., Li H., Huang C., J. Alloy. Compd., 509 (2011), L69.
  • 8. Zhang Y., Zhou M., Fan M., Huang C., Chen C., Cao Y., Li H., Liu X., Curr. Appl. Phys., 11 (2011), 1159.
  • 9. Zhang Y., Huang C., Meng C., Mater. Express, 5 (2015), 105.
  • 10. Zhang Y., Wang N., Huang Y., Wu W., Huang C., Meng C., Ceram. Inter., 40 (2014), 11393.
  • 11. Wang N., Zhang Y., Hu T., Zhao Y., Meng C., Curr. Appl. Phys., 15 (2015), 493.
  • 12. Kumar S., Pickett M.D., Strachan J.P., Gibson G., Nishi Y., Williams R.S., Adv. Mater., 25 (42) (2013), 6128.
  • 13. Wu C.Z., Xie Y., Energ. Environ. Sci., 3 (2010), 1191.
  • 14. Zhang Y., Zhang X., Huang Y., Xiao M., Niu F., Huang C., Meng C., Wu W., Chem. Lett., 43 (3) (2014), 337.
  • 15. Zhang Y., Liu X., Xie G., Yu L., Yi S., Hu M., Huang C., Mater. Sci. Eng. B, 175 (2010), 164.
  • 16. Nguyen T.-D., Do T.-O., Langmuir, 25 (2009), 5322.
  • 17. Theobald F., Cabala R., Bernard J., J. Solid State Chem., 17 (1976), 431.
  • 18. Andersson G., Acta Chem. Scand., 10 (1956), 623.
  • 19. Westman S., Acta Chem. Scand., 15 (1961), 217.
  • 20. Oka Y., Sato S., Yao T., Yamamoto N., J. Solid State Chem., 141 (1998), 594.
  • 21. Ni J.A., Jiang W.T., Yu K., Gao Y.F., Zhu Z.Q., Electrochim. Acta, 56 (2011), 2122.
  • 22. Zhang Y., Chen C., Wu W., Niu F., Liu X., Zhong Y., Cao Y., Liu X., Huang C., Ceram. Int., 39 (2013), 129.
  • 23. Morin F.J., Phys. Rev. Lett., 3 (1959), 34.
  • 24. Goodenough J.B., J. Solid State Chem., 3 (1971), 490.
  • 25. Zhang Y., Fan M., Niu F., Wu W., Huang C., Liu X., Li H., Liu X., Curr. Appl. Phys., 12 (2012), 875.
  • 26. Zhang Y., Huang Y., Zhang J., Wu W., Niu F., Zhong Y., Liu X., Liu X., Huang C., Mater. Res. Bull., 47 (2012), 1978.
  • 27. Zhang Y., Zhang X., Huang Y., Huang C., Niu F., Meng C., Tan X., Solid State Commun., 180 (2014), 24.
  • 28. Zylbersztejn A., Mott N.F., Phys. Rev. B, 11 (1975), 4383.
  • 29. Whittaker L., Wu T.L., Patridge C.J., Sambandamurthy G., Banerjee S., J. Mater. Chem., 21 (2011), 5580.
  • 30. Zhang Y., Zhang J., Zhang X., Huang C., Zhong Y., Deng Y., Mater. Lett., 92 (2013), 61.
  • 31. Ji S.D., Zhang F., Jin P., Mater. Lett., 65 (2011), 708.
  • 32. Son J.H., Wei J., Cobden D., Cao G.Z., Xia Y.N., Chem. Mater., 22 (2010), 3043.
  • 33. Zhang S., Shang B., Yang J., Yan W., Wei S., Xie Y., Phys. Chem. Chem. Phys., 13 (2011), 15873.
  • 34. Zhang Y., Fan M., Niu F., Zhong Y., Huang C., Liu X., Wang B., Li H., Micro Nano Lett., 6 (2011), 888.
  • 35. Zhang Y., Li W., Fan M., Zhang F., Zhang J., Liu X., Zhang H., Huang C., Li H., J. Alloy. Compd., 544 (2012), 30.
  • 36. Oka Y., Yao T., Yamamoto N., J. Solid State Chem., 86 (1990), 116.
  • 37. Guinneton F., Sauques L., Valmalette J.C., Cros F., Gavarri J.R., J. Phys. Chem. Solids, 62 (2001), 1229.
  • 38. Richardson M.A., Coath J.A., Opt. Laser Technol., 30 (1998), 137.
  • 39. Continenza A., Massidda S., Posternak M., Phys. Rev. B, 60 (1999), 15699.
  • 40. Zhang Y., Fan M., Liu X., Xie G., Li H., Huang C., Solid State Commun., 152 (2012), 253.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-be3f28fe-a169-42ad-b188-1ee0b5fd23f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.