Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | T. 78, nr 9 | 40--48
Tytuł artykułu

Jakość i bezpieczeństwo zdrowotne novel food – wiodący trend ostatnich lat

Warianty tytułu
EN
Quality and health safety of novel foods – a leading trend of recent years
Języki publikacji
PL
Abstrakty
PL
Novel food, nowa żywność (NF), niezależnie od indywidualnych preferencji żywieniowych, religii czy społecznych uwarunkowań, wpływa na rozwój przemysłu spożywczego. Biorąc pod uwagę aspekty związane z dobrostanem zwierząt i produkcją mięsa, eksploatacją zasobów naturalnych, wylesianiem i globalną emisją gazów cieplarnianych, NF ma na celu zaspokojenia popytu na żywność w sposób zrównoważony. Bezpieczeństwo żywności jest kluczowym aspektem w produkcji i postrzeganiu przez konsumentów mięsa z hodowli komórkowych, mikroalg, jadalnych owadów czy żywności opartej na precyzyjnej fermentacji. W publikacji przedstawiono zagadnienia dotyczące wybranych rodzajów novel food, ich funkcjonalności i zastosowań, bezpieczeństwa zdrowotnego, a także preferencji konsumentów.
EN
Novel food (NF), regardless of individual dietary preferences, religion or social circumstances, is influencing the development of the food industry. Taking into account aspects related to animal welfare and meat production, natural resource exploitation, deforestation and global greenhouse gas emissions, NF aims to meet the demand for food in a sustainable manner. Food safety is a key aspect in the production and consumer perception of cultured meat, microalgae, edible insects or foods based on precision fermentation. The publication presents issues concerning selected types of novel foods, their functionality and applications, health safety, as well as consumer preferences.
Wydawca

Rocznik
Strony
40--48
Opis fizyczny
Bibliogr. 138 poz.
Twórcy
  • Instytut Biotechnologii Przemysłu Rolno-Spożywczego im. prof. Wacława Dąbrowskiego – Państwowy Instytut Badawczy, Zakład Technologii i Techniki Chłodnictwa, joanna.markowska@ibprs.pl
  • Instytut Biotechnologii Przemysłu Rolno-Spożywczego im. prof. Wacława Dąbrowskiego – Państwowy Instytut Badawczy, Zakład Technologii i Techniki Chłodnictwa
  • Instytut Biotechnologii Przemysłu Rolno-Spożywczego im. prof. Wacława Dąbrowskiego – Państwowy Instytut Badawczy, Zakład Technologii i Techniki Chłodnictwa
Bibliografia
  • [1] Aro N. i in. 2023. Production of bovine β-lactoglobulin and hen egg ovalbumin by Trichoderma reesei using precision fermentation technology and testing of their techno-functional properties. Food Res. Int. 163, 112131.
  • [2] Aschemann-Witzel J., G. Ares, J. Thogersen, E. Monteleone. 2019. A sense of sustainability? – How sensory consumer science can contribute to sustainable development of the food sector. Trends Food Sci Technol, 90, 180-186.
  • [3] Asgar M., A. Fazilah, N. Huda, R. Bhat, A. Karim. 2010. Nonmeat Protein Alternatives as Meat Extenders and Meat Analogues. Compr. Rev. Food Sci. Food Saf. 9, 513-529.
  • [4] Atik D.S., B. Gurbuz, E. Boluk., I. Palabıyık. 2021. Development of vegan kefir fortified with Spirulina platensis. Food Bioscience, 42, 101050.
  • [5] Atitallah A.B., F. Hentati, M. Dammak, B. Hadrich, I. Fendri. 2019. Effect of microalgae incorporation on quality characteristics and functional and antioxidant capacities of ready-to-eat fish burgers made from common carp (Cyprinus carpio). Appl. Sci. 9,1830.
  • [6] Atitallah B. i in. 2019. Physicochemical, textural, antioxidant and sensory characteristics of microalgae-fortified canned fish burgers prepared from minced flesh of common barbel (Barbus barbus). Food Bioscience, 30. https://doi.org/10.1016/j. fbio.2019.100417
  • [7] Augstin M.A., C.J. Hartley, G. Maloney, S. Tyndall. 2023. Innovation in precision fermentation for food ingredients. Crit. Rev. Food Sci.Nutr. 2023, 1-21.
  • [8] Banach J.L., E.F. Hoek-van den Hilvan, H.J. der Fels-Klerx. 2020. Food safety hazards in the European seaweed chain. Compr. Rev.Food Sci. Food Saf. 19, 332-364.
  • [9] Banovic M., K.G. Grunert. 2023. Consumer acceptance of precision fermentation technology: A crosscultural study. IFSET, 88,103435.
  • [10] Barkallah M. i in. 2017. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage, LWT, 84, 2017.
  • [11] Barkallah M. i in. 2019. Effect of Spirulina platensis biomass wth high polysaccharides content on quality attributes of common Carp (Cyprinus carpio) and Common Barbel (Barbus barbus) fish burgers. Appl. Sci. 9, 2197.
  • [12] Bekker G.A., A.R. Fischer, H. Tobi, H.C. van Trijp. 2017. Explicit and implicit attitude toward an emerging food technology: The case of cultured meat. Appetite, 108, 245-254.
  • [13] Bhat Z.F., H. Bhat. 2011. Tissue engineered meat- future meat. Journal of Stored Products and Postharvest Research, 2, 1-10.
  • [14] Bhat Z.F., H. Fayaz. 2011. Prospectus of cultured meat – advancing meat alternatives. Journal of Food Science and Technology, 48, 125-140.
  • [15] Bottin J.H., J.R. Swann, E. Cropp, E.S. Chambers, H.E. Ford, M.A. Ghatei, G.S. Frost. 2016. Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: A randomised-controlled trial. Br. J. Nutr. 116, 360-374.
  • [16] Bryant C., J. Barnett. 2018. Consumer acceptance of cultured meat: a systematic review. Meat Science, 143,8-17.
  • [17] Bryant C., K. Szejda, N. Parekh, V. Desphande, B. Tse. 2019. A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Frontiers in Sustainable Food Systems, 3, 11.
  • [18] Burdock G.A., I.G.Carabin. 2004. Generally recognized as safe (GRAS): history and description. Toxicology Letters. 150, 3-18.
  • [19] Cappelli A., E. Cini, C. Lorini, N. Oliva, G. Bonaccorsi. 2020. Insects as food: A review on risks assessments of Tenebrionidae and Gryllidae in relation to a first machines and plants development. Food Control, 108, 106877
  • [20] Çelekli A., B. Özbal, H. Bozkurt. 2024. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods, 13, 725.
  • [21] Chen C., T. Tang, Q. Shi, Z. Zhou, J. Fan. 2022. The potential and challenge of microalgae as promising future food sources. Trends in Food Science & Technology,126, 99-112.
  • [22] Cherta-Murillo A., A.M. Lett, J. Frampton, E.S. Chambers, T.J.A. Finnigan, G.S. Frost. 2020. Effects of mycoprotein on glycaemic control and energy intake in humans: A systematic review. Br. J. Nutr. 123, 1321-1332.
  • [23] Chezan D., O.Flannery, A. Patel. 2022. Factors affecting consumer attitudes to fungi-based protein: A pilot study. Appetite 175,106403.
  • [24] Choi E.S. I.in. 2014. Microbiological quality of seasoned roasted laver and potential hazard control in a real processing line. J. Food Protect. 77, 2069-2075.
  • [25] Chriki S., J-F. Hocquette. 2020. The Myth of Cultured Meat: A R eview. Frontiers in Nutrition, 7, 7.
  • [26] Christaki E., E. Bonos, P. Florou-Paneri. 2015. Innovative Microalgae Pigments as Functional Ingredients in Nutrition. In: Kim, S.-K. Ed., Handbook of Marine Microalgae: Biotechnology Advances, Elsevier Academic Press, London, 233-243.
  • [27] Coleman B. i in. 2022. Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods, 5,100139.
  • [28] Colosimo R., A.M. Mulet-Cabero, F.J. Warren, C.H. Edwards, T.J.A. Finnigan, P.J. Wilde 2020. Mycoprotein ingredient structure reduces lipolysis and binds bile salts during simulated gastrointestinal digestion. Food Funct. 11, 10896-10906.
  • [29] Dean D. i in. 2022. Understanding key factors influencing consumers’ willingness to try, buy, and pay a price premium formycoproteins. Nutrients, 14, 3292.
  • [30] Denny A., B. Aisbitt, J. Lunn. 2008. Mycoprotein and Health. Nutr. Bull. 33, 298-310.
  • [31] Dunlop M.V., S.P. Kilroe, J.L. Bowtell, T.J.A. Finnigan, D.L. Salmon, B.T. Wall. 2017. Mycoprotein represents a bioavailable and insulinotropic non-animal-derived dietary protein source: A dose-response study. Br. J. Nutr.118, 673-685.
  • [32] E delman P.D., D.M. MCFarland, V.A. Mironov, J.G. Matheny. 2005. In vitro-cultured meat production. Tissue Engineering, 11, 659-662.
  • [33] E dwards D., J. Cummings. 2010. The Protein Quality of Mycoprotein. Proc. Nutr. Soc. 69, 331.
  • [34] E FSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2016. Scientific opinion on the safety of UV - treated milk as a novel food pursuant to Regulation (EC) No 258/97. EFSA Journal 2016, 14(1):4370.
  • [35] E FSA Scientific Committee. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13,4257.
  • [36] E lhassan M., K. Wendin, V. Olsson, M.Langto. 2019. Quality Aspects of Insects as Food-Nutritional, Sensory, and Related Concepts. Foods, 8, 95.
  • [37] E lzerman J.E., A.C. Hoek, M.A. Van Boekel, P.A. Luning. 2011. Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Qual. Prefer. 22, 233-240.
  • [38] FAO 2019. High Level Expert Forum – How to Feed World in 2050 Office of the Director, Agricultural Development Economics and Social Development Department https://www.fao.org/wsfs/forum2050
  • [39] FAO. 2021. Looking at edible insects from a food safety perspective. Challenges and Opportunities for the Sector, https://www.fao.org/policy-support/tools-and-publications/resources-details/es/c/1394684/.
  • [40] FAO 2024. Fishery and Aquaculture Statistics – Yearbook 2021. FAO Yearbook of Fishery and Aquaculture Statistics. Rome. https://doi.org/10.4060/cc9523en.
  • [41] FAO 2024. The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome. https://doi.org/10.4060/cd0683en.
  • [42] Finnigan T., L. Needham, C. Abbott. 2017. Mycoprotein: A healthy new protein with a low environmental impact. In Sustainable Protein Sources; Academic Press: Cambridge, MA, USA.
  • [43] Food and Drug Administration. Re: GRAS Notice No. GRN 000967. 2021. Available online: https://www.fda.gov/media/1522 89/download.
  • [44] Francis F. i in. 2019. Limited cross reactivity among arginine kinase allergens from mealworm and cricket edible insects. Food Chem. 276, 714–718.
  • [45] Garcia J.L., M. De Vicente, B. Galan. 2017. Microalgae, old sustainable food and fashion nutraceuticals. Microb. Biotechnol. 10, 1017-1024.
  • [46] Garino C., H. Mielke, S. Knuppel, T. Selhorst, H. Broll, A. Braeuning. 2020. Quantitative allergenicity risk assessment of food products containing yellow mealworm (Tenebrio molitor). Food Chem. Toxicol. 142, 111460.
  • [47] Gerbens-Leenes P., M. Mekonnen, A.Y. Hoekstra. 2013. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resour. Ind. 1, 25-36.
  • [48] Gonzalez A., S. Paz, C. Rubio, A.J. Gutierrez, A. Hardisson. 2009. Human exposure to iodine from the consumption of edible seaweeds. Biol. Trace Elem. Res. 197, 361-366.
  • [49] Goumperis T. 2019. Insects as food: risk assessment and their future perspective in Europe. In: Sogari G, Mora C, Menozzi D (eds) Edible insects in the food sector. Springer, Cham, 1-9.
  • [50] Hadi J., G. Brightwell. 2021. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 10, 1226.
  • [51] Harris H.C., C.A. Edwards, D.J. Morrison. 2019. Short chain fatty acid production from mycoprotein and mycoprotein fibre in an in vitro fermentation model. Nutrients, 11, 800.
  • [52] Hashempour-Baltork F. I.in. 2023. Mycoprotein as chicken meat substitute in nugget formulation: Physicochemical and sensorial characterization. Food Sci. Nutr. 11, 4289-4295.
  • [53] Hashempour-Baltork F., S.M. Hosseini, M.A. Assarehzadegan, K. Khosravi-Darani, H. Hosseini. 2020. Safety assays and nutritional values of mycoprotein produced by Fusarium venenatum IR372C from date waste as substrate. J. Sci. Food Agric., 100, 4433–4441.
  • [54] He W. i in. 2021. Identification of potential allergens in larva, pupa, moth, silk, slough and feces of domestic silkworm (Bombyx mori). Food Chem. 62, 130231.
  • [55] Heussner A.H., L. Mazija, J. Fastner, D.R. Dietrich. 2012. Toxin content and cytotoxicity of algal dietary supplements. Toxicol. Appl.Pharmacol. 265, 263-271.
  • [56] Hocquette A, C. Lambert, C. Sinquin, L. Peterolff, Z. Wagner, S.P.F. Bonny, A. Lebert, J-F. Hocquettede. 2015. Educated consumers don’t believe artificial meat is the solution to the problems with the meat industry. Journal of Integrative Agriculture, 14, 273-84.
  • [57] https://eur-lex.europa.eu/legal-content
  • [58] https://gfi-apac.org/novel-food-regulations-around-the-world
  • [59] https://www.fao.org/newsroom/detail/fao-report-global-fisheries-and-aquaculture-productionreaches-a-new-record-high/en;
  • [60] https://www.foodstandards.gov.au/
  • [61] https://www.thebusinessresearchcompany.com/report/algae-products-global-market-report
  • [62] I sleten Hosoglu M. 2018. Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry. Food Chem. 240, 1210-1218.
  • [63] Jacobson M.F., J. DePorter. 2018. Self-reported adverse reactions associated with mycoprotein (Quornbrand) containing foods. Ann.Allergy Asthma Immunol. 120, 626-630.
  • [64] Jeon M.J. I.in. 2017. Excessive iodine intake and thyrotropin reference interval: Data from the Korean national health and nutrition examination survey. Thyroid, 27, 967-972.
  • [65] Khan M.I., J.H. Shin, J.D. Kim. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17, 36.
  • [66] Khan R. i in. 2024. Mycoprotein as a meat substitute: Production, functional properties, and current challenges-a review. Int. J. Food Sci. 59, 522-544.
  • [67] Kim H.J. i in. 2018. Iodine intake as a risk factor for BRAF mutations in papillary thyroid cancer patients from an iodine-replete area. Eur. J. Nutr. 57, 809-815.
  • [68] Kouřimska L., A. Adamkova.2016. Nutritional and sensory quality of edible insects. NFS J 4,22-26.
  • [69] Koyande A.K., K.W. Chew, K. Rambabu, Y. Tao, D.-T. Chu, P.-L. Show. 2019. Microalgae: A potential alternative to health supplementation for humans, Food Science and Human Wellness, 8, 1, 16-24.
  • [70] Lafarga T. i in. 2021. Consumer knowledge and attitudes towards microalgae as food: The case of Spain. Algal Res. 54, 102174
  • [71] Lamberti C. i in. 2021. Thermal processing of insect allergens and IgE cross-recognition in Italian patients allergic to shrimp, house dust miteand mealworm. Food Res. Int. 148, 110567.
  • [72] Landeta-Salgado C., P. Cicatiello, M.E. Lienqueo. 2021. Mycoprotein and hydrophobin like protein produced from marine fungi Paradendryphiella salina in submerged fermentation with green seaweed Ulva spp. Algal Res. 56, 102314.
  • [73] Liang J., N. Xu, A.K. Nedele, M. Rigling, L. Zhu, Y. Zhang, Y. Zhang. 2023. Upcycling of soy whey with Ischnoderma benzoinum toward production of bioflavors and mycoprotein. J. Agric. Food Chem. 71, 9070-9079.
  • [74] Liu F. I.in. 2022. Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Crit. Rev. Food Sci. Nutr. 2022, 63, 6423-6444.
  • [75] Lonchamp J. I.in. 2022. Mycoprotein as novel functional ingredient: Mapping of functionality, composition and structure throughout the Quorn fermentation process. Food Chem. 396, 133736.
  • [76] Lonchamp J., M. Akintoye, P.S. Clegg, S.R. Euston. 2020. Sonicated extracts from the Quorn fermentation co-product as oil-lowering emulsifiers and foaming agents. Eur. Food Res. Technol. 246, 767-780.
  • [77] Lorenzo R.A., S., Pais, I. Racamonde, D. Garcia-Rodriguez, A.M. Carro. 2012. Pesticides in seaweed: Optimization of pressurized liquid extraction and in-cell clean-up and analysis by liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 404,173-181.
  • [78] MacArtain P., C.I.R. Gill, M. Brooks, R. Campbell, I.R. Rowland. 2007. Nutritional Value of Edible Seaweeds. Nutr. Rev. 65, 535-543.
  • [79] Markets and Markets. Algae Products Market. 2023. https://www.marketsandmarkets.com/Market-Reports/algae-product-market-250538721.htm.
  • [80] Marti-Quijal F.J., S. Zamuz, I. Tomaševi´c, B. Gomez, G. Rocchetti, L. Lucini, J.M. Lorenzo. 2019. Influence of different sources of vegetable, whey and microalgae proteins on the physicoche ical properties and amino acid profile of fresh pork sausages. LWT. 110, 316-323.
  • Nowoczesne technologie
  • [81] Mason J.B. 2018. Fostering strategies to expand the consumption of edible insects: The value of a tripartite coalition between academia, industry,and government. Curr. Dev. Nutr.2, zy056.
  • [82] Matassa S., N. Boon, I. Pikaar, W. Verstraete. 2016. Microbial protein: Future sustainable food supply route with low environmental footprint. Microb. Biotechnol. 9, 568-575.
  • [83] Michel F., A. Knaapila, C. Hartmann, M. Siegrist. 2021. A multi-national comparison of meat eaters’ attitudes and expectations for burgers containing beef, pea or algae protein. Food Qual. Prefer., 91, 104195.
  • [84] Mouritsen O.G., L. Williams, R. Bjerregaard, L. Duelund. 2012. Seaweeds for umami flavour in the New Nordic Cuisine. Flavour, 1, 4.
  • [85] Nałęcz D. 2024. Właściwości funkcjonalne białek owadow jadalnych i ich wykorzystanie w przemyśle spożywczym. Przemysł Spożywczy, 78, 48-54.
  • [86] Nielsen M.B.; A.S. Meyer, J. Arnau. 2024. The next food revolution is here: Recombinant microbial production of milk and egg proteins by precision fermentation. Annu. Rev. Food Sci. Technol. 15, 1-15.
  • [87] O ’Keefe L., C. McLachlan, C. Gough, S. Mander, A. Bows-Larkin. 2016. Consumer responses to a future UK food system. Br. Food J. 118, 412-428.
  • [88] Pali-Scholl I., K. Verhoeckx, I. Mafra, S.L. Bavaro, E.N.C. Mills, L. Monaci. 2019. Allergenic and novel food proteins: State of the artand challenges in the allergenicity assessment. Trends Food Sci. Technol. 84, 45-48.
  • [89] Parniakov O., S. Toepfl, F.J. Barba, D. Granato, M. Lorenzo, S. Zamuz, M. Lorenzo. 2018. Impact of the soy protein replacement by legumes and algae based proteins on the quality of chicken rotti. J. Food Sci. Technol. 55, 2552-2559.
  • [90] Parodi A. i in. 2018. The potential of future foods for sustainable and healthy diets. Nat Sustain, 1, 782-789.
  • [91] Perfect Day. Applications of ProFerm. 2024. https://perfectday.com/applications/
  • [92] Purschke B., P. Meinlschmidt, C. Horn, O. Rieder, H. Jager. 2018. Improvement of Techno-Functional Properties of Edible Insect Protein from Migratory Locust by Enzymatic Hydrolysis. Eur. Food Res. Technol. 244, 999-1013.
  • [93] Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001
  • [94] Reihani S.F.S., K. Khosravi-Darani. 2018. Mycoprotein production from date waste using Fusarium venenatum in a submerged culture. Appl. Food Biotechnol. 5, 243-352.
  • [95] Ribeiro J.C., B. Sousa-Pinto, J. Fonseca, S.C. Fonseca, L.M. Cunha. 2021. Edible insects and food safety: Allergy. J. Insects Food Feed, 7, 833-847.
  • [96] Ribeiro J.C., L.M. Cunha, B. Sousa-Pinto, J. Fonseca. 2018. Allergic risks of consuming edible insects: A systematic review. Mol. Nutr.Food Res. 62, 1700030.
  • [97] R olland N.C.; C.R. Markus, M.J. Post. 2020. The effect of information content on acceptance of cultured meat in a tasting context. PLoS ONE, 15, e0231176.
  • [98] Saeed F. i i n. 2023. Role of mycoprotein as a non-meat protein in food security and sustainability: A review. Int. J. Food Prop. 26, 683-695.
  • [99] Sahoo, Dinabandhu, Baweja Pooja. 2015. The Algae World. Vol. 26. edited by D. Sahoo and B. Pooja. Springer New York LLC;
  • [100] Salgado C.L., R. Munoz, A. Blanco, M.E. Lienqueo. 2021. Valorization and upgrading of the nutritional value of seaweed and seaweed waste using the marine fungi Paradendryphiella salina to produce mycoprotein. Algal Res. 53, 102135.
  • [101] Sanchez-Sabate R., J. Sabate. 2019. Consumer attitudes towards environmental concerns of meat consumption: a systematic review. Int J Environ Res Public Health, 16(7),1220.
  • [102] Santeramo F.G., D. Carlucci, B. De Devitiis, A. Seccia, A. Stasi, R. Viscecchia, G. Nardone. 2018. Emerging trends in European food, diets and food industry. Food Res Int , 104, 39-47.
  • [103] Sathasivam R., R. Radhakrishnan, A. Hashem, E.F. Abd_Allah. 2019. Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26,4,709-722.
  • [104] Shahbazpour N., K. Khosravi-Darani, A. Sharifan, H. Hosseini. 2021., Replacement of meat by mycoproteins in cooked sausages: Effects on oxidative stability, texture, and color. Ital. J. Food Sci. 33, 163-169.
  • [105] Shahid M. i in. 2023. The effect of mycoprotein intake on biomarkers of human health: A systematic review and meta-analysis. Am. J. Clin. Nutr. 118, 141-150.
  • [106] Sharma N.K., A.K. Rai. 2008. Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum. Ecotoxicol. Environ. Saf. 69, 158-162.
  • [107] Siegrist M., B. Sutterlin, C. Hartmann. 2018. Perceived naturalness and evoked disgust influence acceptance of cultured meat. Meat Science, 139, 213-219
  • [108] Siegrist M., B. Sutterlin. 2017. Importance of perceived naturalness for acceptance of food additives and cultured meat. Appetite, 113, 320-326.
  • [109] Szabo N.J., R.A. Matulka, L. Kiss, P. Licari. 2012. Safety evaluation of a high lipid Whole Algalin Flour (WAF) from Chlorella protothecoides. Regul. Toxicol. Pharmacol.63, 155-165.
  • [110] Tee R.D., D.J. Gordon, J.A. Welch, A.J. Newman Taylor. 1993. Investigation of possible adverse allergic reactions to mycoprotein (‘Quorn’). Clin. Exp. Allergy 23, 257-260.
  • [111] Terefe, N.S. 2022. Recent developments in fermentation technology: Toward the next revolution in food production. In Food Engineering Innovations across the Food Supply Chain; Academic Press: Cambridge, MA, USA; pp. 89–106.
  • [112] Thomas A.B., T.D. Shetane, R.G. Singha, R.K. Nanda, S.S. Poddar, A. Shirsat. 2017. Employing central composite design for evaluation of biomass production by Fusarium venenatum: In vivo antioxidant and antihyperlipidemic properties. Appl. Biochem. Biotechnol. 183, 91-109.
  • [113] Thomas O.Z., M. Chong, A.K.Y. Leunh, T.M. Fernandex, NG, S.T.2023. Not getting laid: Consumer acceptance of precision fermentation made egg. Front. Sustain. Food Syst. 7, 1-16.
  • [114] Tucker C.A. 2014. The significance of sensory appeal for reduced meat consumption. Appetite, 81, 168-179.
  • [115] Turck D. i in. Safety of vitamin D2 mushroom powder as a Novel food pursuant to Regulation (EU) 2015/2283 (NF 2019/1471). EFSA J. 2022 Jun 10;20(6):e07326.
  • [116] Turner A., H. Pollock, M.T. Brown. 2009. Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca. Environ. Pollut. 157, 2314-2319.
  • [117] Umesh M. i in. 2023. Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties. Environ. Res. 229, 115973.
  • [118] Upcraf, T., W. Tu, R. Johnson, T. Finnigan, N.V. Hung, J. Hallett, M. Guo. 2021. Protein from renewable resources: Mycoprotein production from agricultural residues. Green. Chem. 23, 5150-5165.
  • [119] van der Spiegel M., M.Y. Noordam, H.J. van der Fels-Klerx. 2013. Safety of novel protein sources (insects, microalgae, seaweed,duckweed, and papeseed) and legislative aspects for their application in food and feed production. Compr. Rev. Food Sci. Food Saf. 12, 662-678.
  • [120] van der Weele C., P. Feindt, A. Jan van der Goot, B. van Mierlo, M. van Boekel. 2019. Meat alternatives: an integrative comparison. Trends Food Sci Technol, 88, 505-512.
  • [121] Van Itterbeeck J., L. Pelozuelo. 2022. How many edible insect species are there? A not so simple question. Diversity 14(2), 143.
  • [122] Veldkamp T., L. Dong, A. Paul, C.C.F.M. Govers. 2022. Bioactive properties of insect products for monogastric animals – A review. J.Insects Food Feed. 8, 1027-1040.
  • [123] Wajda Ł. i in. 2020. Dried Biomass of Arthrospira platensis Inhibits Growth of Aureobasidium pullulans LW14 and Some Bacteria When Added to Unpasteurised Apple Juice. Indian J Microbiol 60, 346-352.
  • [124] Wells M.L. i in. 2017.Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29, 949-982.
  • [125] West S. i in. 2023. Ingestion of mycoprotein, pea protein, and their blend support comparable postexercise myofibrillar protein synthesis rates in resistance-trained individuals. Am. J. Physiol. Endocrinol. Metab. 325, E267-E279.
  • [126] Whittaker J.A., R.I. Johnson, T.J.A. Finnigan, S.V. Avery, P.S. Dyer. 2020. The Biotechnology of Quorn Mycoprotein: Past, Present and Future Challenges. In Grand Challenges in Fungal Biotechnology; Nevalainen, H., Ed.; Springer: Cham, Switzerland, 2020; Chapter 3; 59-79.
  • [127] Wiebe M.G. 2004. QuornTM mycoprotein-overview of a successful fungal product. Mycologist 18, 17-20.
  • [128] Wilks M., C.J.C. Phillips. 2017. Attitudes to In Vitro Meat: A Survey of Potential Consumers in the United States. PLoS ONE, 12, e0171904.
  • [129] Wolkers H., M.J. Barbosa, D.M.M. Kleinegris, R. Bosma, R.H. Wijffels, P.F.H. Harmsen. 2011. Microalgae: the green gold of the future? Large-scale sustainable cultivation of microalgae for the production of bulk commodities. Wageningen UR, Propress, Wageningen, ISBN 978-94-6173-062-6.
  • [130] Xu D., Y. Xiao, H. Pan, Y. Mei. 2019. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol.Environ. Saf. 174, 43-47.
  • [131] Yasin N.M.N., S.M. Shalaby. 2013. Quality Characteristics of Croissant Stuffed with Imitation Processed Cheese Containing Microalgae Chlorella vulgaris Biomass. World Journal of Dairy & Food Sciences 8. 58-66.
  • [132] Zeng, B., K. Nilssom, P.G. Teixeira, B. Bergenstahl, 2023. Study of mycoprotein extraction methods and its functional properties. Colloids Surf. A Physicochem. Eng. Asp. 659, 130800.
  • [133] Zhang L., W. Liao, Y. Huang, Wen, Yuxi, Y. Chu, C. Zhao. 2022. Global seaweed farming and processing in the past 20 years. Food Production, Processing and Nutrition. 4. 10.1186/s43014-022-00103-2.
  • [134] Zhang M., L. Li, J. Bai. 2020. Consumer acceptance of cultured meat in urban areas of three cities in China. Food Control,118,107390.
  • [135] Zhao X.; J. Zhou, G. Du, J. Chen. 2021. Recent Advances in the Microbial Synthesis of Hemoglobin. Trends Biotechnol. 39, 286–297.
  • [136] Zielińska E., B. Baraniak, M. Karaś, K. Rybczyńska, A. Jakubczyk. 2015. Selected Species of Edible Insects as a S ource of Nutrient Composition. Food Res. Int. 77, 460-466.
  • [137] Zimmermann M.B. 2009. Iodine: It’s important in patients that require parenteral nutrition. Gastroenterology, 137, S36-S46.
  • [138] Žugčic T., R. Abdelkebir, F.J. Barba, A. Rezek-Jambrak, F. Galvez, S. Zamuz, D. Granato, J.M. Lorenzo. 2018. Effects of pulses and microalgal proteins on quality traits of beef patties. J. Food Sci. Technol. 55, 4544-4553.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-be2b053a-50ad-4741-96ef-de0aa78f4927
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.