Warianty tytułu
Języki publikacji
Abstrakty
The colonoscopic electrosurgical polypectomy is a very popular surgical procedure in which the colon polyps are removed. In this work, the mathematical description of the electrical and thermal processes proceeding during this procedure has been proposed. The mathematical model contains the specification of the considered domain’s geometry, the system of the partial differential equations that governs heat transfer in the considered particular sub-domains (i.e. polyp, colon and electrode) with the adequate initial-boundary conditions, the system of the differential equations for determination of the electrical potential distribution in the tissue sub-domains, and the definition of the Arrhenius tissue damage integral. Next, the example results of numerical simulations for the proper and incorrect positions of the polyp in the colon are presented. The conclusions are also provided. The proposed research can be helpful for the surgeons to choose the optimal set parameters of the electric current during the endoscopy procedure.
Rocznik
Tom
Strony
43--56
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Department of Mathematics, Czestochowa University of Technology Czestochowa, Poland, jaroslaw.siedlecki@pcz.pl
Bibliografia
- [1] Cotton, P.B., & Williams, Ch.B. (2008). Practical Gastrointestinal Endoscopy: The Fundamentals. A John Wiley & Sons.
- [2] Engin, O. (2015). Colon Polyps and the Prevention of Colorectal Cancer. Springer International Publishing.
- [3] Haycock, A., Cohen, J., Saunders, B.P., Cotton, P.B., & Williams, Ch.B. (2014). Cotton and Williams’ Practical Gastrointestinal Endoscopy, The Fundamentals. 7th ed. Willey Backwell.
- [4] Gordon, P.H., & Nivatvongs, S. (2007). Principles and Practice of Surgery for the Colon, Rectum, and Anus. Third Edition. Taylor & Francis Group.
- [5] Ciesielski, M., Siedlecki, J., & Janik, M.K. (2020). Mathematical modelling of thermal and electrical processes during electrosurgical resection of colorectal polyps. International Journal of Engineering Science, 154, 103351.
- [6] Ciesielski, M., Siedlecki, J., & Janik, M.K. (2020). Mathematical modelling of thermal and electrical processes in the polyp-colon system during electrosurgical polypectomy. International Journal of Heat and Technology, 38(4), 808-816.
- [7] Martínez, C.A.R., & et al. (2016). Modeling of Electric Field and Joule Heating in Breast Tumor during Electroporation. In: 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico, City. Mexico. September 26-30.
- [8] Pennes, H.H. (1948). Analysis of tissue and arterial blood temperature in the resting human forearm. Journal of Applied Physiology, 1, 93-122.
- [9] Majchrzak, E., Dziatkiewicz, G., & Paruch, M. (2008). The modeling of heating a tissue subjected to external electromagnetic field. Acta of Bioengineering and Biomechanics, 10, 29-37.
- [10] Arkin, H., Xu, L.X., & Holmes, K.R. (1994). Recent developments in modeling heat transfer in blood perfused tissues. IEEE Transactions on Biomedical Engineering, 41, 97-107.
- [11] Jasinski, M. (2018). Modelling of thermal damage process in soft tissue subjected to laser irradiation. Journal of Applied Mathematics and Computational Mechanics, 17(2), 29-41.
- [12] Qin, Z., Balasubramanian, S.K., Wolkers, W.F., Pearce, J.A., & Bischof, J.C. (2014). Correlated parameter fit of Arrhenius model for thermal denaturation of proteins and cells. Annals of Biomedical Engineering, 42(12), 2392-2404.
- [13] Paruch, M. (2018). Identification of the degree of tumor destruction on the basis of the Arrhenius integral using the evolutionary algorithm. International Journal of Thermal Sciences, 130, 507-517.
- [14] Singh, S., & Repaka, R. (2018). Parametric sensitivity analysis of critical factors affecting the thermal damage during RFA of breast tumor. International Journal of Thermal Sciences, 124, 366-374.
- [15] Corovic, S., & et al. (2013). Modeling of electric field distribution in tissues during electroporation. BioMedical Engineering OnLine, 12, 16.
- [16] Ciesielski, M., Mochnacki, B., & Siedlecki, J. (2016). Simulations of thermal processes in tooth proceeding during cold pulp vitality testing. Acta of Bioengineering and Biomechanics, 18(3), 33-41.
- [17] Ciesielski, M., & Mochnacki, B. (2018). Hyperbolic model of thermal interactions in a system biological tissue-protective clothing subjected to an external heat source. Numerical Heat Transfer, Part A: Applications, 74(11), 1685-1700.
- [18] Hasgall, P.A., & et al. (2018). IT’IS Database for thermal and electromagnetic parameters of biological tissues, Version 4.0. DOI: 10.13099/VIP21000-04-0.
- [19] Gabriel, C. (1996). Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Report N.AL/OE-TR-1996-0037, Occupational and environmental health directorate, Radiofrequency Radiation Division. Brooks Air Force Base, Texas (USA).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-be18d6b5-cad2-4455-a32d-01682f2dfc68