Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no. e206, 2023
Tytuł artykułu

Mechanical and fracture characteristics of single tunnel under the induced effect of a key joint

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The existence of joint at key position will change the stress distribution law around the tunnel, thereby changing the strength and stability of the tunnel. Therefore, a series of uniaxial compression tests were performed on the single-holed samples containing a joint to explore the effect of key joint parameters, including joint inclination (0°, 30°, 45°, 60°, and 90°) and length (20, 30, 40, and 50 mm), on the mechanical and fracture characteristics of the tunnel. Meantime, the DIC equipment and box dimension method were used to analyze the surface strain field of the sample and quantitatively characterize the surface crack of the failed sample, respectively. The experimental results show the uniaxial compressive strength of samples reaches the maximum and minimum values at joint inclination angles of 0° and 60°, respectively, and the strength of samples is negatively correlated with the joint length. Interestingly, the existence of some key joints can help to improve the strength of the single-holed sample. The strain bands and cracks mainly develop around the joint and the tunnel, which is well explained by the stress distribution results calculated by COMSOL software. The numerical results show that with the increase of joint inclination, the tensile stress at the upper endpoint of circular hole is increasing, and the compressive stress at left and right endpoints of the hole slightly increases. Analyzing the relative positional relationship between the coalescence path and the tunnel, the failure modes of the sample with different joint inclinations are classified into three types: center-symmetric failure (0° and 90°), through-joint failure (30° and 45°) and axisymmetric failure (60°). Additionally, the box fractal dimension of the surface crack of failed sample at the peak stress is closely related to the failure mode of the sample, and the box fractal dimension of samples with the same failure mode is positively correlated with their peak stress.
Wydawca

Rocznik
Strony
art. no. e206, 2023
Opis fizyczny
Bibliogr. 48 poz., rys., wykr.
Twórcy
autor
  • School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
  • Institute of Deep Earth Sciences and Green Energy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
autor
  • School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
autor
  • School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
autor
  • Institute of Deep Earth Sciences and Green Energy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China, cpf6134@163.com
Bibliografia
  • 1. Martino JB, Chandler NA. Excavation-induced damage studies at the underground research laboratory. Int J Rock Mech Min Sci. 2004;41(8):1413–26.
  • 2. Golshani A, Oda M, Okui Y, Takemura T, Munkhtogoo E. Numerical simulation of the excavation damaged zone around an opening in brittle rock. Int J Rock Mech Min Sci. 2007;44(6):835–45.
  • 3. Li Y, Peng J, Zhang F, Qiu Z. Cracking behavior and mechanism of sandstone containing a pre-cut hole under combined static and dynamic loading. Eng Geol. 2016;213:64–73.
  • 4. Zhou XP, Bao XR, Yu MH, Xie Q. Triaxial stress state of cylindrical openings for rocks modeled by elastoplasticity and strength criterion. Theor Appl Fract Mech. 2010;53(1):65–73.
  • 5. Zhao XD, Zhang HX, Zhu WC. Fracture evolution around preexisting cylindrical cavities in brittle rocks under uniaxial compression. Trans Nonferrous Met Soc China. 2014;24(3):806–15.
  • 6. Yang SQ, Tian WL, Huang YH, Ma ZG, Fan LF, Wu ZJ. Experimental and discrete element modeling on cracking behavior of sandstone containing a single oval flaw under uniaxial compres- sion. Eng Fract Mech. 2018;194:154–74.
  • 7. Yang SQ, Huang YH, Tian WL, Zhu JB. An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression. Eng Geol. 2017;217:35–48.
  • 8. Wei Z, Yang SQ, Tian WL. Experimental and numerical investigation of brittle sandstone specimens containing different shapes of holes under uniaxial compression. Eng Fract Mech. 2018;200:430–50.
  • 9. Yang SQ, Jing HW. Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. Int J Fract. 2011;168(2):227–50.
  • 10. Yang SQ. Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure. Eng Fract Mech. 2011;78(17):3059–81.
  • 11. Cao P, Liu TY, Pu CZ, Lin H. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Eng Geol. 2015;187:113–21.
  • 12. Park CH, Bobet A. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng Fract Mech. 2010;77(14):2727–48.
  • 13. Shen B. The mechanism of fracture coalescence in compression experimental study and numerical simulation. Eng Fract Mech. 1995;51(1):73–85.
  • 14. Sahouryeh E, Dyskin AV, Germanovich LN. Crack growth under biaxial compression. Eng Fract Mech. 2002;69(18):2187–98.
  • 15. Dyskin AV, Sahouryeh E, Jewell RJ. Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression. Eng Fract Mech. 2003;70(15):2115–36.
  • 16. Wong LNY, Einstein HNY. Fracturing behavior of prismatic specimens containing single flaws. In: Golden rocks 2006, the 41st US symposium on rock mechanics (USRMS). 2006.
  • 17. Yang SQ, Huang YH, Jing HW, et al. Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Eng Geol. 2014;178(6):28–48.
  • 18. Yang SQ, Yang DS, Jing HW, et al. An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures. Rock Mech Rock Eng. 2012;45(4):563–82.
  • 19. Cao RH, Cao P, Fan X, Xiong X, Lin H. An experimental and numerical study on mechanical behavior of ubiquitous-joint brittle rock-like specimens under uniaxial compression [J]. Rock Mech Rock Eng. 2016;49(11):4319–38.
  • 20. Cao RH, Cao P, Lin H, Pu CZ, Ou K. Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach. Rock Mech Rock Eng. 2016;49(3):763–83.
  • 21. Chen X, Liao ZH, Peng X. Deformability characteristics of jointed rock masses under uniaxial compression. Int J Min Sci Technol. 2012;22:213–21.
  • 22. Yang XX, Jing HW, Tang CA, Yang SQ. Effect of parallel joint interaction on mechanical behavior of jointed rock mass models. Int J Rock Mech Min Sci. 2017;92:40–53.
  • 23. Wang F, Cao P, Chen Yu, Gao QP, Wang Z. An experimental study on mechanical behavior of parallel Joint specimens under compression shear. Adv Civ Eng. 2018;4:5428670.
  • 24. Prudencio M, Van Sint JM. Strength and failure modes of rock mass models with non-persistent joints. Int J Rock Mech Min Sci. 2007;44:890–902.
  • 25. Bahaaddini M, Sharrock G, Hebblewhite BK. Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Comput Geotech. 2013;49:206–25.
  • 26. Fan X, Kulatilake PHSW, Chen X. Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: a particle mechanics approach. Eng Geol. 2015;190(14):17–32.
  • 27. Cao RH, Cao P, Lin H, Ma GW, Fan X, Xiong XG. Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: experimental studies and particle mechanics approach. Arch Civ Mech Eng. 2018;18(1):198–214.
  • 28. Wang XM, Zhu ZM, Wang M, Ying P, Dong YQ. Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts. Eng Fract Mech. 2017;181:52–64.
  • 29. Zhou CT, Xie HP, Zhu JB, Wang ZH, Wang F. Mechanical and fracture behaviors of brittle material with a circular inclusion: insight from infilling composition. Rock Mech Rock Eng. 2022;55:3331.
  • 30. Liu ZZ, Cao P, Li KH, Wang F, Dong T, Liu JS. Fracture analysis of central-flawed rock-like specimens under the influence of coplanar or non-coplanar edge flaws. B Eng Geol Eniron. 2022;81(1):1–17.
  • 31. Miao ST, Pan PZ, Wu ZH, Zhao S. Fracture analysis of sandstone with a single filled flaw under uniaxial compression. Eng Fract Mech. 2018;204:319–43.
  • 32. Zhou XP, Wang YT, Zhang JZ, Liu FN. Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness. Rock Mech Rock Eng. 2018;52(3):691–718.
  • 33. Zhu QQ, Li DY, Han ZY, Li XB, Zhou ZL. Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression. Int J Rock Mech Min Sci. 2019;115:33–47.
  • 34. Carpinteri A, Lacidogna G, Pugno N. Scaling of energy dissipation in crushing and fragmentation: a fractal and statistical analysis based on particle size distribution. Int J Fract. 2004;129:131–9.
  • 35. Perfect E. Fractal models for the fragmentation of rocks and soils: a review. Eng Geol. 1997;48(3/4):185–98.
  • 36. Xie HP. Fractals in Rock Mechanics. Beijing: Science Press; 1996.
  • 37. He MC, Yang GX, Miao JL, Jia XN, Jiang TT. Classification and research methods of rockburst experimental fragments. Chin J Rock Mech Eng. 2009;28(8):1521–9 ((in Chinese)).
  • 38. Chen X, Wang SZ, Li L. Characteristics of fragments of jointed rock mass model under uniaxial compression. Chin J Rock Mech Eng. 2012;31(5):898–907 ((in Chinese)).
  • 39. Yang SQ. Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure. Eng Fract Mech. 2011;78:3059–81.
  • 40. Ulusay R, Hudson JA. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Suggested Methods Prepared by the Commission on Testing Methods. Ankara, Turkey: International Society for Rock Mechanics Compilation Arranged by the ISRM Turkish National Group; 2007. p. 628.
  • 41. Tao Z, Chen JR, Xie HP, Zhou CT, Wang F, Zhu JB. Failure and mechanical behaviors of sandstone containing a pre-existing flaw under compressive-shear loads: insight from a digital image correlation (DIC) analysis. Rock Mech Rock Eng. 2022;55:4237–56.
  • 42. Lin QB, Cao P, Wen GP, Meng JJ, Cao RH, Zhao ZY. Crack coalescence in rock-like specimens with two dissimilar layers and pre-existing double parallel joints under uniaxial compression. Int J Rock Mech Min Sci. 2021;139: 104621.
  • 43. Hoek E, Martin CD. Fracture initiation and propagation in intact rock: a review. J Rock Mech Geotech Eng. 2014;6:287–300.
  • 44. Fan X, Li KH, Lai HP, Xie YL, Cao RH, Zheng J. Internal stress distribution and cracking around flaws and openings of rock block under uniaxial compression: a particle mechanics approach. Comput Geotech. 2018;102:28–38.
  • 45. Fan X, Jiang XD, Liu YX, Lin H, Li KH, He ZM. Local stress distribution and evolution surrounding flaw and opening within rock block under uniaxial compression. Theor Appl Fract Mec. 2021;112: 102914.
  • 46. Lin QB, Cao P, Cao RH, Lin H, Meng JJ. Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression. Arch Civ Mech Eng. 2020;20:19.
  • 47. Green AE, Zerna W. Theoretical elasticity. Oxford: Oxford University Press; 1968.
  • 48. Zhang K, Liu XH, Li K, Wu WY. Investigation on the correlation between mechanical characteristics and fracturing fractal dimension of rocks containing a hole and multi-flaws. Chin J Rock Mech Eng. 2018;37(12):2785–94 (in Chinese).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bdfafc63-0ac7-45e1-9ccc-fad771d4e4fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.