Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, iss. 3 | 326--335
Tytuł artykułu

Advancing Electrical Losses Assessment Methods in Power Systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The operation of modern power systems requires a sophisticated technological infrastructure to effectively manage and evaluate their parameters and performance. This infrastructure includes the generation, transmission and distribution power system components. This paper provides an overview of the loss evaluation to a part of Kosovo’s power system, substation with wind and photovoltaic (PV) energy sources integrated (SS Mramori, SS Kitka, and SS Kamenica) and the analysis of the loss assessment methods. One the assessment method in the research encompass simulated loss scenarios and their corresponding values in network components, employing the simulation based on the respective software tools. In current trends, power systems are visualized through the Supervisory Control and Data Acquisition (SCADA) platform. However, in Kosovo, although losses are integral to the SCADA system, they are represented as a overall value in the online mode, not encompassed depict losses per-components in real-time. This limitation hinders effective online power system optimization regarding the losses. As consequence, the purpose of this study is proposal a logical method developed through neural networks. The methodology incorporates various parameters, including as inputs variables; voltages, currents, active and reactive powers, and their computed values for extracting losses (X(x1, x2, ..., xn)). These parameters undergo systematic processing through hidden layers (Y(x1, x2, ..., xn)), leading to the classification of components within the power system. Finally, at the output stage (A(x1, x2, ..., xn)), an assessment is conducted based on the level of losses observed in the components of the power system. This implementation method promises significant benefits for transmission systems, impacting not only reducing losses, power quality but also yielding economic advantages.
Wydawca

Rocznik
Strony
326--335
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Department of Power Engineering, Faculty of Electrical and Computer Engineering, University of Prishtina "Hasan Prishtina" 10000, Prishtina, Kosovo
  • Department of Finance Accounting, Faculty of Business, University of Durres "Aleksander Moisiu", 2000, Durres, Albania, shaqirrexhepi@uamd.edu.al
Bibliografia
  • 1. Akhtar S., Adeel M., Iqbal M., Namoun A., Tufail A., Ki-Hyung Kim, 2023. Deep learning methods utilization in electric power systems. Energy Reports, 10, 2138-2151, https://doi.org/10.1016/j.egyr.2023.09.028.
  • 2. Albogamy F.R., Khan S.A., Hafeez G., Murawwat S., Khan S., Haider S.I., Basit A., Thoben K. D. 2022. Real-time energy management and load scheduling with renewable energy integration in smart grid. Sustainability, 14(3), 1792. https://doi.org/10.3390/su14031792.
  • 3. Cinar M., Kaygusuz A., 2020. Artificial immunity based wound healing algorithm for power loss optimization in smart grids. Advances in Electrical and Computer Engineering, 20(1), 11-18, doi:10.4316/AECE.2020.01002.
  • 4. Elahi M., Afolaranmi S.O., Martinez Lastra J.L. et al. 2023. A comprehensive literature review of the applications of AI techniques through the lifecycle of industrial equipment. Discov. Artif. Intell, 3, 43. https://doi.org/10.1007/s44163-023-00089-x.
  • 5. ETAP 2023. Electrical Power System Analysis & Operation Software. Demoversion, Student edition, Kalifornia, USA.
  • 6. Garip S, Özdemir Ş, Altin N. 2022. Power system reliability assessment – A review on analysis and evaluation methods. JES, 6(3), 401-19.
  • 7. Grohs P., Kutyniok G. 2022. Mathematical aspects of deep learning. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781009025096
  • 8. He Tao et al., 2021. Analysis and evaluation of power grid loss reduction from the perspective of operation inspection based on risk theory. IOP Conf. Ser.: Earth Environ. Sci. 784 012036, doi:10.1088/1755-1315/784/1/012036
  • 9. Laurencio-Pérez Á., Pérez-Maliuk I., Pérez-Maliuk O., 2022. Evaluation of losses in electrical subtransmission networks by neural network modeling. DYNA, 89(221), 78-83. https://doi.org/10.15446/dyna.v89n221.97552
  • 10. Lu Shen, Zhenpeng Li, Tao Ma, 2019. Analysis of the power loss and quantification of the energy distribution in PV module. Applied Energy, 260, 114333, https://doi.org/10.1016/j.apenergy.2019.114333
  • 11. Ma C., Drauz S.R., Bolgaryn R., Menke J.-H., Schaefer F., Dasenbrock J., Braun M., Hamann L., Zink M., Schmid K.-H., Estel J., 2019, A comprehensive evaluation of the energy losses in distribution systems with high penetration of distributed generators. In: 25th International Conference on Electricity Distribution.
  • 12. Moldoveanu C., Ionita I., Brezoianu V., Tava A., Zaharescu S., Dan Grigorescu S., 2019. Requirements of a real time monitoring and analysis system of power losses in electrical transmission and distribution systems. In: 8th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Cluj, Romania, 2019, pp. 1-6, doi: 10.1109/MPS.2019.8759792
  • 13. Muratov A., Saparniyazova Z., Bakhadirov I.I., Bijanov A., 2021, Analysis of electricity loss calculation methods in distribution networks. Energy Systems Research, E3S Web Conf. Vol. 289. https://doi.org/10.1051/e3sconf/202128907017
  • 14. Otcenasova A., Bolf A., Altus J., Regula M. 2019. The influence of power quality indices on active power losses in a local distribution grid. Energies, 12(7), 1389. https://doi.org/10.3390/en12071389
  • 15. Pandey U., Pathak A., Kumar A., Mondal S., 2023. Applications of artificial intelligence in power system operation, control and planning: A review. Clean Energy, 7(6), 1199–1218. https://doi.org/10.1093/ce/zkad061
  • 16. Pham T. & Li X. 2022. Neural network-based power flow model. In: IEEE Green Technologies Conference (GreenTech), pp. 105-109.
  • 17. Rexhepi V. & Hulaj A. 2020. Monitoring parameters of power transformers in the electrical power system through smart devices. Journal of Energy Systems, 4(2), 48-57.
  • 18. Rexhepi V., 2023. The dispatch center’s role in the power grid operation and control. Elektrotehniški Vestnik, 90(1-2), 51-59.
  • 19. Sayar M., and Yüksel H. 2020. Real-time prediction of electricity distribution network status using artificial neural network model: A case study in Salihli (Manisa, Turkey), Dergi Park, DOI:18466/cbayarfbe.740343.
  • 20. Shariq S., Arif A., Aman M.M. 2023. Estimation of technical losses on transmission systems using a neural network prognosis algorithm (NNPA). Engineering Proceedings, 46(1), 25. https://doi.org/10.3390/engproc2023046025.
  • 21. Su Dai, Yunlong Ma, Kai Wang, Bowen Liu, Changming Liu, 2022. Application research of BP neural network algorithm in power line loss calculation. Journal of Physics: Conference Ser es 2146, 012008, IOP Publishing, doi:10.1088/1742-6596/2146/1/01200.
  • 22. Tao He, 2021. Analysis and evaluation of power grid loss reduction from the perspective of operation inspection based on risk theory. IOP Conf. Ser.: Earth Environ. Sci. 784 012036, doi:10.1088/1755-1315/784/1/012036.
  • 23. Tautz-Weinert J. and Watson S.J. 2016. Using scada data for wind turbine condition monitoring – a review. IET Renewable Power Generation, 11(4), 382-394. https://doi.org/10.1049/iet-rpg.2016.0248.
  • 24. Yathish V. 2022. Loss functions and their use in neural networks. Towards Data Science.
  • 25. Ymeri A, Krasniqi N, Shaqiri R. 2023. Protection coordination for wind farm integration in the kosovo transmission system. Ecological Engineering & Environmental Technology, 24(8), 64-72. doi:10.12912/27197050/171495.
  • 26. Zheng Y., Shahabi L., 2023. Optimum operation of energy hub by considering renewable resources by considering risk tolerance and risk taking with teaching–learning-based optimization. Journal of Cleaner Production, 428, 139220, https://doi.org/10.1016/j.jclepro.2023.139220.4.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bddeccf6-9c60-4014-b007-8091e72ea41e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.