Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we study the modern mathematical theory of the optimal control problem associated with the fractional Roesser model and described by Caputo partial derivatives, where the functional is given by the Riemann-Liouville fractional integral. In the formulated problem, a new version of the increment method is applied, which uses the concept of an adjoint integral equation. Using the Banach fixed point principle, we prove the existence and uniqueness of a solution to the adjoint problem. Then the necessary and sufficient optimality condition is derived in the form of the Pontryagin’s maximum principle. Finally, the result obtained is illustrated by a concrete example.
Czasopismo
Rocznik
Tom
Strony
271--300
Opis fizyczny
Bibliogr. 47 poz., wzory
Twórcy
autor
- Department of Mechanics and Mathematics, Baku State University, Baku, Azerbaijan, yusubov_shakir@mail.ru
autor
- Department of Mathematics, Istanbul Technical University, Istanbul, Turkey, elimhan22@yahoo.com
- Azerbaijan National Aviation Academy, Baku, Azerbaijan
- Research Center for Mathematical Modeling and Optimization, Azerbaijan State University of Economics
Bibliografia
- [1] S. Abbas, M. Benchohra and A.N. Vityuk: On fractional order derivatives and Darboux problem for implicit differential equations. Fractional Calculus and Applied Analysis, 15(2), (2012), 168-182. DOI: 10.2478/s13540-012-0012-5
- [2] O.P. Agrawal: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynamics, 38(1), (2004), 323-337. DOI: 10.1007/s11071-004-3764-6
- [3] I. Basdouri, S. Kasmi and J. Lerbet: Practical Mittag-Leffler stability of quasi-one-sided Lipschitz fractional order systems. Archives of Control Sciences, 33(1), (2023), 55-70. DOI: DOI: 10.24425/acs.2023.145113
- [4] K. Benyettou and D. Bouagada: Admissibility tests for multidimensional singular fractional continuous-time models. Archives of Control Sciences, 32(3), (2022), 607-625. DOI: 10.24425/acs.2022.142851
- [5] V. Capasso, S. Anita and V. Arnautu: An Introduction to Optimal Control Problems in Life Sciences and Economics. Birkhäuser, Boston 2010.
- [6] M. Bergounioux and L. Bourdın: Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constaints. ESAIM: Control, Optimisation and Calculus of Variations, 26 (2020), 1-38. DOI: 10.1051/cocv/2019021
- [7] A.H. Bhrawy and M.A. Zaky: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dynamics, 80(1-2), (2015), 101-116. DOI: 10.1007/s11071-014-1854-7
- [8] K. Diethelm: The Analysis of Fractional Differential Equations. An Application-Oriented Exposition using Differential Operators of Caputo Type. Lecture Notes in Matematics, 2004, Spinger-Verlag, Berlin 2010.
- [9] S. Dipierro, E. Palatuccı and G. Valdinoci: Dislocation dynamics in crystals: A macroscopic theory in a fractional Laplace setting. Communications in Mathematical Physics, 333(2), (2015), 1061-1105. DOI: 10.1007/s00220-014-2118-6
- [10] L. Fang, Ti-Jun Xiao and H. Xu: On nonlinear neutral fractional integrodifferential inclusions with infinite delay. Journal of Applied Mathematics, 2012 (2012), 1-19. DOI: 10.1155/2012/916543
- [11] R. Gabasov and F.M. Kirillova: High-order necessary conditions for optimality. SIAM Journal on Control, 10(1), (1972), 127-168. DOI: 10.1137/0310012
- [12] W.M. Haddad and A. L’Afflitto: Finite-time partial stability theory and fractional Lyapunov differential inequalities. 2015 American Control Conference (ACC), Chicago, IL, USA, (2025), 5347-5352. DOI: 10.1109/ACC.2015.7172175
- [13] D. Idczak: Bang-bang principle for linear and non-linear Goursat-Darboux problem. International Journal of Control, 76(11), (2003), 1089-1094. DOI: 10.1080/0020717031000123283
- [14] D. Idczak, R. Kamocki, M. Majewski and S. Walczak: Existence of optimal solutions to Lagrange problems for Roesser type systems of the first and fractional orders. Applied Mathematics and Computation, 66(C) (2015), 809-819. DOI: 10.1016/j.amc.2015.05.142
- [15] J. Liang, Y. Mu and X. Ti-Jun: Nonlocal Cauchy problems for fractional differentia equations involving 𝜓-Hilfer multivariable operators. Fractional Calculus and Applied Analysis, 23(4), (2020), 1090-1124. DOI: 10.1515/fca-2020-0056
- [16] R. Kamocki: Pontryagin maximum principle for fractional ordinary optimal control problems. Mathematical Methods in the Applied Sciences, 37(11), (2014), 1668-1686. DOI: 10.1002/mma.2928
- [17] R. Kamocki and M. Majewski: Fractional linear control systems with Caputo derivative and their optimization. Optimal Control Applications and Methods, 36(6), (2014), 953-967. DOI: 10.1002/oca.2150
- [18] R. Kamocki: Necessary and sufficient optimality conditions for fractional nonhomogeneous Roesser model. Optimal Control Applications and Methods, 37(4), (2015), 1-16. DOI: 10.1002/oca.2180
- [19] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo: Theory and Applications of Fractional Differential Equations. Volume 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam 2006.
- [20] J. Klamka: Local controllability of fractional discrete-time semilinear systems. Acta Mechanica et Automatica, 5(2), (2012), 55-58. DOI: 10.2316/P.2012.769-028
- [21] P. Kulczycki, J. Korbicz and J. Kacprzyk: Fractional Dynamical Systems: Methods, Algorithms and Applications. Springer, 2022.
- [22] I. Lasiecka and R. Triggiani: Domains of Fractional Powers of Matrix-valued Operators: A General Approach. In: Arendt, W., Chill, R., Tomilov, Y. (eds.) Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics. Operator Theory: Advances and Applications, 250 Birkhäuser, Cham. DOI: 10.1007/978-3-319-18494-4-20
- [23] M.S. Mahmoud and Yuanqing Xia: Applied Control Systems Design. Springer, 2012.
- [24] E.N. Mahmudov: Approximation and Optimization of Discrete and Differential Inclusions. Elsevier, Boston, USA 2011.
- [25] E.N. Mahmudov and Sh.Sh. Yusubov: Nonlocal boundary value problems for hyperbolic equations with a Caputo fractional derivative. Journal of Computational and Applied Mathematics, 398(2), (2021), 1-15. DOI: 10.1016/j.cam.2021.113709
- [26] E.N. Mahmudov: Optimization of higher-order differential inclusions with special boundary value conditions. Journal of Optimization Theory and Applications, 192(3), (2022), 36-55. DOI: 10.1007/s10957-021-01936-6
- [27] E.N. Mahmudov and D.I. Mastaliyeva: Optimal control of higher-order retarded differential inclusions. Journal of Industrial and Management Optimization, 19(9), (2023), 6544-6557. DOI: 10.3934/jimo.2022226
- [28] R. Metzler and J. Klafter: The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 339(1), (2000), 1-77. DOI: 10.1016/S0370-1573(00)00070-3
- [29] M.A. Nazra, L.Y. Zulakmal and R. Revina: On LQ optimization problem subject to fractional order irregular singular systems. Archives of Control Sciences, 30(4), (2020), 745-756. DOI: 110.24425/acs.2020.135850
- [30] V. Obukhovskii and J.C. Yao: Some existence results for fractional functional differentia equations. Fixed Point Theory, 11(1), (2010), 85-96.
- [31] I. Podlubny: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Ca 1999.
- [32] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishenko: Mathematical Theory of Optimal Processes, Nauka, Moscow 1983; Gordon and Breach, New York 1986.
- [33] A.B. Salati, M. Shamsi and D.F.M. Torres: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Communications in Nonlinear Science and Numerical Simulation, 67 (2019), 334-350. DOI: 10.48550/arXiv.1805.06537
- [34] S.G. Samko, A.A. Kilbas and O.I. Marichev: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon, Switzerland 1993.
- [35] B. Sikora and N. Matlok: On controllability of fractional positive continuous-time linear systems with delay. Archives of Control Sciences, 31(1), (2021), 29-51. DOI: 110.24425/acs.2021.136879
- [36] H.T. Tuan, A. Czornik, J.J. Nieto and M. Niezabitowski: Global attractivity for some classes of Riemann-Liouville fractional differential systems. Journal of Integral Equations and Applications, 31(2), (2017), 265-282. DOI: 10.1216/JIE-2019-31-2-265
- [37] C. Tunç, O. Tunç and J.C. Yao: On the new qualitative results in integro-differential equations with Caputo fractional derivative and multiple kernels and delays. Journal of Nonlinear and Convex Analysis 23(11), (2022), 2577-2591.
- [38] Sh.Sh. Yusubov: Necessary conditions of optimality for systems with impulse control. Computational Mathematics and Mathematical Physics, 45 (2005), 222-226.
- [39] Sh.Sh. Yusubov: Necessary optimality conditions for singular controls. Computational Mathematics and Mathematical Physics, 47 (2007), 1446-1451.
- [40] Sh.Sh. Yusubov: Necessary optimality conditions for singular control in one system with distributed parameters. Journal of Computer and Systems Sciences International, 47(1), (2008), 8-13. DOI: 10.1134/S1064230708010024
- [41] Sh.Sh. Yusubov: On an optimality of the singular with respect to components controls in the Goursat-Dourboux systems. Problemy Upravleniya, 5 (2014), 2-6, (in Russian).
- [42] Sh.Sh. Yusubov: Necessary conditions of optimality for the quasi-singular relative to the component controls in the Goursat-Darboux systems. TWMS Journal of Pure and Applied Mathematics, 6(2), (2015), 246-253.
- [43] Sh.Sh. Yusubov: Boundary value problems for hyperbolic equations with a Caputo fractional derivative. Advanced Mathematical Models and Applications, 5 (2020), 192-204.
- [44] Sh.Sh. Yusubov and E.N. Mahmudov: Optimality conditions of singular controls for systems with Caputo fractional derivatives. Journal of Industrial and Management Optimization, 19(1), (2022), 246-264. DOI: 10.3934/jimo.2021182
- [45] Sh.Sh. Yusubov and E.N. Mahmudov: Necessary and sufficient optimality conditions for fractional Fornasini-Marchesini model. Journal of Industrial and Management Optimization, 19(10), (2023), 7221-7244. DOI: 10.3934/jimo.2022260
- [46] Sh.Sh. Yusubov and E.N. Mahmudov: Some necessary optimality conditions for systems with fractional Caputo derivatives. Journal of Industrial and Management Optimization, 19(12), (2023), 8831-8850. DOI: 10.3934/jimo.2023063
- [47] Sh.Sh. Yusubov and E.N. Mahmudov: Necessary optimality conditions for quasi-singular controls for systems with Caputo fractional derivatives. Archives of Control Sciences, 33(3), (2023), 463-496. DOI: 10.24425/acs.2023.146955
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bd86040b-1e44-4a17-8cb2-990e6502c974