Warianty tytułu
Języki publikacji
Abstrakty
The influence of the local sea surface temperature (SST) and remote ENSO (El Niño-Southern Oscillation) indices on the wind speed (WS) data were explored for the Indian Ocean region. Relationships among the parameters were studied using spatial correlation plots and significant correlation ranges. Two months (July and January) representing opposite monsoon phases were selected for analysis for the period 1950-2016. There was a significant negative correlation between WS and SST over the Bay of Bengal (BOB) during July. Although different ENSO indices correlated differently in different areas of the Indian Ocean, the region off the coast of Sri Lanka was most significantly teleconnected. The southwest monsoon locally impacted the WS and SST relationship and the WS parameter was remotely teleconnected in both the monsoon seasons. Further empirical orthogonal function (EOF) analysis was applied on the 67 years WS data of the BOB region to extract the dominant mode representing maximum variability of the total variance. The temporal pattern of the first principal component (PC1) of WS data was linked to the North Atlantic Oscillations in January and the Atlantic Multidecadal Oscillation in July respectively. The continuous wavelet power spectra of the PC1 of WS showed significant regions in the 2-4-year band resembling the ENSO variability. Wavelet coherence applied between PC1 of WS and the ENSO indices showed greatest values for January in the 8-16-year band and for July in the 0-4-year band. A close relationship was established between the WS variability in BOB and the ENSO indices.
Czasopismo
Rocznik
Tom
Strony
126--138
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mathematics, Techno India University, Saltlake, Kolkata, India, mou510@gmail.com
autor
- Department of Home, Swami Vivekananda State Police Academy, Barrackpore, India
autor
- National Centre for Medium Range Weather Forecasting, Noida, Uttar Pradesh, India
Bibliografia
- [1] Annamalai, H., Xie, S. P., McCreary, J. P., Murtugudde, R., 2005. Impact of Indian Ocean sea surface temperature on developing El Niño. J. Clim. 18, 302-319, http://dx.doi.org/10.1175/JCLI-3268.1.
- [2] Azad, S., Rajeevan, M., 2016. Possible shift in the ENSO-Indian monsoon rainfall relationship under future global warming. Nature Sci. Rep. 6 (1), art. no. 20145, 6 pp., http://dx.doi.org/10.1038/srep20145.
- [3] Barnston, A. G., Livezey, R. E., 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115, 1083-1126, http://dx.doi.org/10.1175/1520-0493(1987)115(1083:CSAPOL)2.0.CO;2.
- [4] Chen, W., Dong, B., Lu, R., 2010. Impact of the Atlantic Ocean on the multidecadal fluctuation of El Niño-Southern Oscillation-South Asian monsoon relationship in a Coupled General Circulation Model. J. Geophys. Res. 115 (D17), art. no. D17109, 12 pp., http://dx.doi.org/10.1029/2009JD013596.
- [5] Dong, L., McPhaden, M. J., 2018. Unusually warm Indian Ocean sea surface temperatures help to arrest development of El Niño in 2014. Nature Sci. Rep. 8, art. no. 2249, 10 pp., http://dx.doi.org/10.1038/s41598-018-20294-4.
- [6] Enfield, D. B., Mestas-Nunez, A. M., Trimble, P. J., 2001. The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 28, 2077-2080, http://dx.doi.org/10.1029/2000GL012745.
- [7] Fan, F., Dong, X., Fang, X., Xue, F., Zheng, F., Zhu, J., 2017. Revisiting the relationship between the south Asian summer monsoon drought and El Niño warming pattern. Atmos. Sci. Lett. 18 (4), 175-182, http://dx.doi.org/10.1002/asl.740.
- [8] Fisher, R. A., 1992. Statistical Methods for Research Workers. In: Kotz, S., Johnson, N. L. (Eds.), Breakthroughs in Statistics. Springer Series in Statistics (Perspectives in Statistics). Springer, New York, 66-70, http://dx.doi.org/10.1007/978-1-4612-4380-9_6.
- [9] Goswami, B. N., Madhusoodanan, M. S., Neema, C. P., Sengupta, D., 2006. A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett. 33 (2), art. no. L02706, 4 pp., http://dx.doi.org/10.1029/2005GL024803.
- [10] Grinsted, A., Moore, J. C., Jevrejeva, S., 2004. Application of the CrossWavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Proc. Geoph. 11, 561-566, http://dx.doi.org/10.5194/npg-11-561-2004.
- [11] Huang, C., Qiao, F., 2009. The relationship between sea surface temperature anomaly and wind energy input in the Pacific Ocean. Progr. Nat. Sci. 19 (10), 1409-1412, http://dx.doi.org/10.1016/j.pnsc.2009.03.004.
- [12] Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., Zhang, H., 2017. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations and Intercomparisons. J. Clim. 30, 8179-8205, http://dx.doi.org/10.1175/JCLI-D-16-0836.1.
- [13] Jevrejeva, S., Moore, J. C., Grinsted, A., 2003. Influence of the Arctic Oscillation and El Nino-Southern Oscillation (ENSO) on Ice Conditions in the Baltic Sea: The wavelet Approach. J. Geophys. Res. 108, art. no. D214677, 10 pp., http://dx.doi.org/10.1029/2003JD003417.
- [14] Kerr, R. A., 2000. A North Atlantic climate pacemaker for the centuries. Science 288 (5473), 1984-1986, http://dx.doi.org/10.1126/science.288.5473.1984.
- [15] Klein, S., Soden, A. B. J., Lau, N. C., 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Clim. 12, 917-932, http://dx.doi.org/10.1175/1520-0442(1999)012(0917:RSSTVD)2.0.CO;2.
- [16] Kug, J. S., Kang, I. S., 2006. Interactive feedback between ENSO and the Indian Ocean. J. Clim. 19, 1784-1801, http://dx.doi.org/10.1175/JCLI3660.1.
- [17] Kumar, K. K., Rajagopalan, B., Cane, M. A., 1999. On the weakening relationship between the Indian monsoon and ENSO. Science 284 (5423), 2156-2159, http://dx.doi.org/10.1126/science.284.5423.2156.
- [18] Li, T., Wang, B., Wu, B., Zhou, T., Chang, C. P., Zhang, R., 2017. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteorol. Res. 31 (6), 987-1006, http://dx.doi.org/10.1007/s13351-017-7147-6.
- [19] Li, T., Zhang, Y., Chang, C. P., Wang, B., 2001. On the relationship between Indian Ocean sea surface temperature and Asian summer monsoon. Geophys. Res. Lett. 28, 2843-2846, http://dx.doi.org/10.1029/2000GL011847.
- [20] Lorenz, E. N., 1956. Empirical orthogonal functions and statistical weather prediction. Statistical Forecast Project Report 1, Dept. of Meteor. MIT Tech. Rep. 49, 52 pp., https://eapsweb.mit.edu/sites/default/files/Empirical_Orthogonal_Functions_1956.pdf.
- [21] McPhaden, M. J., 2002. El Niño and La Niña: Causes and global consequences, in Encyclopedia of Global Environmental Change. John Wiley, Chichester, U.K, 353-370, https://www.pmel.noaa.gov/gtmba/files/PDF/pubs/ElNinoLaNina.pdf.
- [22] Okumura, M. Y., Deser, C., 2010. Asymmetry in the Duration of El Niño and La Niña. J. Clim. 23 (21), 5826-5843, http://dx.doi.org/10.1175/2010JCLI3592.1.
- [23] Olsen, J., Anderson, J. N., Knudsen, M. F., 2012. Variability of the North Atlantic Oscillation over the past 5200 years. Nat. Geosci. 5, 808-812, http://dx.doi.org/10.1038/ngeo1589.
- [24] Schott, F. A., Xie, S. P., McCreary Jr., J. P., 2009. Indian Ocean circulation and climate variability. Rev. Geophys. 47, art. no. RG1002, 46 pp., http://dx.doi.org/10.1029/2007RG000245.
- [25] Sun, B., Wang, H., 2019. Enhanced connections between summer precipitation over the Three-River-Source region of China and the global climate system. Climate Dynamics 52 (5-6), 3471-3488, http://dx.doi.org/10.1007/s00382-018-4326-9.
- [26] Torrence, C., Compo, G. P., 1998. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 79, 61-78, http://dx.doi.org/10.1175/1520-0477(1998)079(0061:APGTWA)2.0.CO;2.
- [27] Venzke, S., Latif, M., Villwock, A., 2000. The coupled GCM ECHO-2. Part II: Indian Ocean response to ENSO. J. Clim. 13, 1371-1383, http://dx.doi.org/10.1175/1520-0442(2000)013(1371:TCGE)2.0.CO;2.
- [28] Xie, S. P., Kosaka, Y., Du, Y., Hu, K., Chowdary, J. S., Huang, G., 2016. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci. 33 (4), 411-432, http://dx.doi.org/10.1007/s00376-015-5192-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bd4ae65c-ee7c-4dfe-aca0-a9bc42595e03