Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 23, iss. 3 | 72--78
Tytuł artykułu

An Investigation to Estimate the Maximum Yielding Capability of Power for Mini Venturi Wind Turbine

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research work deals with the design and fabrication of windmill using venturi effect. The venturi effect is achieved such a way that the propeller rotation is increased about four times for the wind velocity in the surroundings. For any direction of wind flow, the propeller is rotated. The wind velocity required for power production in our research area is very less when compared with the existing systems. There are no effects on the birds and also there is reduction in noise level when compared with existing conventional wind mills. The wind enters the nozzle where its velocity is increased slightly. Hence the proposed idea is to overcome the difficulties in exisisting wind mills. From this experimental analysis it was understood that the maximum yield of power was increased by 12% nearly (800 to 1000 W) compared to conventional windmills, which can be used essentially for domestic applications. The design in terms of cost and life was to be increased by 6% as compared to VAWT and HAWT. By the utilization of venturi wind turbines; the possibilities of facing real time problems such as resonance and sound intensity was decresed by 10% as compared to conventional wind turbines.
Wydawca

Rocznik
Strony
72--78
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, 600 062, Chennai, India, sunilkumark@veltech.edu.in
  • Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, 600 062, Chennai, India
  • Department of Electrical and Electronics Engineering, Christ the King Engineering College, 641104, Karamadai, Coimbarore, India
Bibliografia
  • 1. Rashedi A., I. Sridhar, K.J. Tseng A. Rashed et al. 2012. Multi-objective material selection for wind turbine blade and tower: Ashby’s approach. Materials and Design 37, 521–532.
  • 2. Bagudanch I., Vives-Mestres, M.; Sabater, M.; Garcia-Romeu, M. 2017. Polymer incremental sheet forming process: Temperature analysis using response surface methodology. Mater. Manuf. Process., 32, 44–53.
  • 3. Boyer M. 1996. Investigation of a Venturi as a pump application to an Antarctic Sublimation system. Doctoral dissertation, University of Tasmania.
  • 4. Bukala J., Damaziak K., Karimi H.R., Kroszczynski K., Krzeszowiec M., Malachowski J. 2015. Modern small wind turbine design solutions comparison in terms of estimated cost to energy output ratio. Renewable Energy, 83, 1166–1173.
  • 5. Burton T, Jenkins N, Sharpe D, Bossanyi E. 2011. Wind energy handbook. 2nd edition. John Wiley and Sons Ltd.; Chichester.
  • 6. Chang T-P, Ko H-H, Liu F-J, Chen P-H, Chang Y-P, Liang Y-H, et al. 2012. Fractal dimension of wind speed time series. Appl. Energy; 93, 742.
  • 7. Falconer K. 1990. Fractal geometry. Mathematical foundations and applications. Chichester (UK): John Wiley & Sons.
  • 8. Chong W.T., Poh S.C., Fazlizan A., Yip S.Y., Chang C.K., Hew W.P., 2013. Early development of an energy recovery wind turbine generator for exhaust air system. Applied energy, 112, 568–575.
  • 9. Chore P. and Navale L.G. 2018. Design and Analysis of Ducted Wind Turbine for House Hold Purpose. Int. Res. J. Eng. Technol., 5(9), 1631–1635.
  • 10. Elliott D, Infield D. 2012. An assessment of the impact of reduced averaging time on small wind turbine power curves, energy capture prediction and turbulence intensity measurements. Wind Energy, 2(17), 337–342.
  • 11. Elshazly E., Eltayeb N., Abdel Fatah A.A., El-Sayed, T.A. 2019. Experimental and computational investigation of energy ball wind turbine aerodynamic performance. Advances in Mechanical Engineering, 11(10), 1687814019879546.
  • 12. Francois N., Piacquadio M., Daraio M. 2011. Multifractal analysis of scleroglucan hydrogels for drug delivery. Fractals, 19, 339.
  • 13. Gohar G.A., Manzoor T., Ahmad A., Hameed Z., Saleem F., Ahmad I., Sattar A., Arshad A. 2019. Design and comparative analysis of an INVELOX wind power generation system for multiple wind turbines through computational fluid dynamics. Advances in Mechanical Engineering, 11(4), 1687814019831475.
  • 14. Hanna S. 2019. Introducing INVELOX technology to generate energy using wind and wind turbines by retrofitting traditional wind turbines (Master’s thesis).
  • 15. Hau E. (Ed.) 2006. Wind turbines fundamentals, technologies, applications, economics. 2nd edition. Springer; Heidelberg. doi: ISBN3–540–24240–6
  • 16. Ikui T., Inoue M., Kaneko K. 1972.On the cascade performance of circular-arc blades. International Symposium on Gas Turbines in Tokyo; Islam MQ, Islam AS. The aerodynamic performance.
  • 17. Bukala J., Damaziak K. Small wind turbines: Specification, design, and economic evaluation.
  • 18. Fagbenro K.A., Mohamed M.A. Computational modeling of the aerodynamics of windmill blades at high solidity.
  • 19. Kumar K.S., Arun S., Mohan A., Muniamuthu S. 2016. Experimental analysis of noise and vibration reduction in windmill gear box for 5 mW wind turbine, 76–85.
  • 20. Kumar K.S., Palanisamy R., Aravindh S., Mohan G.S. 2017. Design and analysis of windmill blades for domestic applications. 25–36.
  • 21. Kumar S., Muniamuthu S., Mohan A., Amirthalingam P., Muthuraja M.A. 2022. Effect of charging and discharging process of PCM with paraffin and Al2O3 additive subjected to three point temperature locations. Journal of Ecological Engineering, 23(2), 34–42.
  • 22. Salvos M.G. 2011. Multifractal analysis of electricity demand. Presented at the 3rd Latin American Conference on Energy Economics (ELAEE, 2011), Buenos Aires, April 2011.
  • 23. Manzano J., Palau C.V., Benito M., Guilherme V., Vasconcelos D.V. 2016. Geometry and head loss in Venturi injectors through computational fluid dynamics. Engenharia Agrícola, 36, 482–491.
  • 24. Manzoor Hussain M., Sambasiva Rao C.H. and Prasad K.E. 2008. Reverse engineering: point cloud generation with CMM for part modeling and error analysis. ARPN Journal of Engineering and Applied Sciences, 3(4),.37–40.
  • 25. Menter F.R., Langtry R.B., Likki S.R., Suzen Y.B., Huang P.G., Völker S. A correlation-based transition model using
  • 26. Meratizaman, M. and Nateqi, M., 2021. Feasibility study of new generation of wind turbine (INVELOX), is it competitive with the conventional horizontal axis wind turbine? Energy, 217, p.119350.
  • 27. Nardecchia F., Groppi D., Garcia D.A., Bisegna F., de Santoli L. 2021. A new concept for a mini ducted wind turbine system. Renewable Energy, 175, pp.610–624.
  • 28. Nardecchia F., Groppi D., Lilliu I., Astiaso Garcia D., De Santoli L. 2020. Increasing energy production of a ducted wind turbine system. Wind Engineering, 44(6), 560–576.
  • 29. Pehlivan A.S., Aksit M.F., Erbatur K. 2021. Fatigue analysis design approach, manufacturing and implementation of a 500 kW wind turbine main load frame. Energies, 14(12), 3581.
  • 30. Ragheb M. 2014. Wind energy converters concepts. University of Illinois at Urbana-Champaign, Champaign, IL.
  • 31. Rolland S., Auzane B. 2012. The potential of small and medium wind energy in developing countries. Position Paper: Alliance for Rural Electrification.
  • 32. Rosen M., Piacquadio M. 2008. Multifractal analysis of a road-to-crisis in a Faraday experiment.
  • 33. Sayed A.A., Sadiq M.Z.I., Rudaba Q.N., Khondokar S., Shatil, A.H.M. 2019. January. Generating Electricity Using INVELOX and a Better One Compared to Traditional Wind Turbine. In: International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), IEEE, pp. 130–133.
  • 34. Solanki A.L., Kayasth B.D., Bhatt H. 2017. Design modification & analysis for venturi section of INVELOX system to maximize power using multiple wind turbine. Int J Innovat Res Sci Technol, 3, 125–127.
  • 35. Burton T., Sharpe D., Jenkins N., Bossany E., 2004. Wind Energy Handbook (3rd Ed.). John Wiley & Sons Ltd.
  • 36. Tarquis A.M., Castellanos M.T., Morató M.C., Antón J.M. 2005. Multiscaling analysis of wind velocity time series. Proc. 4th WSEAS/IASME Int. Conf on System Science and Simulation in Engineering, Tenerife, Spain, Dec. 2005.
  • 37. Tijera M., Cano J.L., Cano D., Bolster D., Redondo J.M. 2008. Filtered deterministic waves and analysis of the fractal dimension of the component of the wind velocity. Il Nuovo Cimento C; 31(5/6), 653.
  • 38. Trzepieciński T. 2020. Recent developments and trends in sheet metal forming. Metals, 10(6), 779.
  • 39. Zhu F., Lu G., Zou R. 2008. On the development of a knowledge-based design support system for energy absorbers. Mater Des, 29, 48491.
  • 40. Zierke W.C. 1989. The measurement of boundary layers on a compressor blade in cascade. Vols. 1 and 2, NASA CR, 185118.
  • 41. Karthickeyan N.K., Arun S., Mohan G.S., Kumar S. 2017. Structural analysis of exhaust manifold for 1500 Hp engine. International Journal of Mechanical Engineering and Technology, 8(3), 379–387.
  • 42. Chidambaram P.K., Thamilarasan K., Kumar J.B., Mary L.A. 2021. A review on turbines in power production using wind and hydro energy. Materials Today: Proceedings.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bd49aeb8-0562-4e55-a469-f6a8b1efe392
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.