Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 71, nr 2 | 63--72
Tytuł artykułu

Effect of silica filler on properties of PMMA resin

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Of this paper was to investigate the effect of silica nanofiller addition to PMMA-based denture material. The null hypothesis was that no difference exists between the mean flexural strength, hardness, sorption among materials without and with different content of silica filler. Design/methodology/approach: The nanosilica was introduced into “powder” component of commercially available PMMA resin for dentistry in concentrations 2, 5 and 10%. The SEM observations were made to confirm dispersion quality. To confirm presence of silica filler the X-ray microanalysis have been made. The influence of nanosilica addition on flexural strength, flexural modulus, hardness and sorption were investigated. Samples were stored at distilled water and ethanol solution. Statistical analysis were prepared with the one-way or the two-way analysis of variance ANOVA ( α =0.05), and Newman-Keuls significant difference post hoc test was used to determine the differences between mean values ( α =0.05). Findings: The result show that all investigated properties were changed after silica filler addition. Initially flexural strength decreased, but after accelerated again in ethanol incised. Flexural modulus and hardness increased. Sorption was decreased in both aging liquids. Research limitations/implications: Limitations resulting from the specificity of the conditions of laboratory tests and aging conditions so it does not allow to fully translate obtained results to expected results of clinical trials. Practical implications: The PMMA drawback is still insufficient mechanical properties, so it can be easily damaged during an accidents or when a patients applies high mastication force to the denture which show areas for further mechanical properties improvement. One of the ways of improving the mechanical properties of PMMA based materials may be nanoparticle addition, including commonly used nanosilica fillers. Originality/value: Influence of destructive plasticizing solutions on chosen properties of materials with different concentrations of silica fillers have been investigated.
Wydawca

Rocznik
Strony
63--72
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland , grzegorz.chladek@polsl.pl
autor
  • Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland , katarzyna.basa@polsl.pl
autor
  • OrthoProtetic Point, ul. Mickiewicza 18, 47-400 Racibórz, Poland
autor
  • Faculty of Prosthodontic Technology, Medical School of Silesian Voivodeship, ul. 3 Maja 63, 41-800 Zabrze, Poland
autor
  • Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland , wojciech.pakiela@polsl.pl
Bibliografia
  • 1. J.P. Singh, R. K. Dhiman, R.P.S. Bedi, S.H. Girish, Flexible dentures base materials: a viable alternative to conventional acrylic dentures base material, Contemporary Clinical Dentistry 2/4 (2011) 313-317.
  • 2. N. Yunus, A.A. Rashid, L.L. Azmi, M.I. Abu-Hassan, Some flexural properties of a nylon denture base polymer, Journal of Oral Rehabilitation 32/1 (2005) 65-71.
  • 3. J.H. Kim, H.C. Choe, M.K. Son, Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture, Dental Material Journal 33/1 (2014) 32-38.
  • 4. J. Wadachi, M. Sato, Y. Igarashi, Evaluation of the rigidity of dentures made of injection-molded materials, Dental Material Journal 32/3 (2013) 508-511.
  • 5. M. Wieckiewicz, V. Opitz, G. Richter, K.W. Boening, Physical properties of polyamide-12 versus PMMA denture base material, BioMed Research International (2014) 1-8.
  • 6. F.S. Fernandes, T. Pereira-Cenci, W.J. da Silva, et al., Efficacy of denture cleansers on Candida spp. biofilm formed on polyamide and polymethyl methacrylate resins, The Journal of Prosthetic Dentistry 105/1 (2011)51-58.
  • 7. J. Shah, N. Bulbule, S. Kulkami, R. Shah, D. Kakade, Comparative evaluation of sorption, solubility and microhardness of heat cure polymethylmethacrylate denture base resin & flexible denture base resin, Journal of Clinical and Diagnostic Research 8/8 (2014) ZF01-ZF04.
  • 8. G. Polyzois, A. Niarchou, P. Ntala, A. Pantopoulos, M. Frangou, The effect of immersion cleansers on gloss, colour and sorption of acetal denture base material, Gerodontology 30/2 (2013) 150-156.
  • 9. K. Anusavice, Ch. Shen, H.R. Rawls, Phillips' Science of Dental Materials, Saunders Elsevier, USA, 2012.
  • 10. W. Yu, X. Wang, Q. Tang, M. Guo, J. Zhao, Reinforcement of denture base PMMA with ZrO(2) nanotubes, Journal of Mechanical Behavior of Biomedical Materials 32 (2014) 192-197.
  • 11. D. Cokeliler, S. Erkut, J. Zemek, H. Biederman, M. Mutlu, Modification of glass fibers to improve reinforcement: a plasma polymerization technique, Dental Materials 23/3 (2007) 335-342.
  • 12. S. Balos, T. Balos, L. Sidjanin, D. Markovic, B. Pilic, J. Pavlicevic, Study of PMMA biopolymer properties treated by microwave energy, Materiale Plastice 48 (2011) 127-131.
  • 13. C.A. Avila-Herrera, O. Gomez-Guzman, J.L. Almaral- Sanchez, J.M. Yanez-Limon, J. Munoz-Saldana, M. Ramirez-Bon, Mechanical and thermal properties of Si02-PMMA monoliths, Journal of Non-Crystalline Solids 352 (2006) 3561-3566.
  • 14. F. Yang, G.L. Nelson, PMMA/silica nanocomposite studies: synthesis and properties, Journal of Applied Polymer Science 91 (2004) 3844-3850.
  • 15. S.C. Tjong, Structural and mechanical properties of polymer nanocomposites, Materials Science and Engineering R 53 (2006) 173-197.
  • 16. H. Yang, S. Wu, J. Hu, Z. Wang, R. Wang, Huiming, Nano-porous thermally sintered nano silica as novel fillers for dental composites, Materials & Design 32 (2011) 1590-1593.
  • 17. S. Balos, B. Pilic, D. Markovic, J. Pavlicevic, O. Luzanin, Poly(methyl methacrylate) nanocomposits with low silica addition, The Journal of Prosthetic Dentistry 111/4 (2014) 327-334.
  • 18. C. Fan, L. Chu, H.R. Rawls, et al., Development of an antimicrobial resin - A pilot study, Dental Materials 27(2011)322-328.
  • 19. A. Sodagar, A. Bahador, S. Khalil, A.S. Shahroudi, M.Z. Kassaee, The effect of Ti02 and Si02 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins, Journal of Prosthodontic Research 57/1 (2013) 15-19.
  • 20. ISO 20795-1:2008 Dentistry-Base polymers - Part 1: Denture base polymers; ISO International Organization for Standardization: Geneva, Switzerland, 2008.
  • 21. ISO 2039-1:2001 Plastics Determination of hardness - Part 1: Ball indentation method; ISO International Organization for Standardization: Geneva, Switzerland, 2001.
  • 22. M.J. Frangou, G.L. Polyzois, Effect of microwave polymerization on indentation creep, recovery and hardness of acrylic denture base materials, European Journal of Prosthodontics and Restorative Dentistry 1 (1993) 111-115
  • 23. A. Azevedo, A.L. Machado, C.E. Vergani, et al., Hardness of denture base and hard chair-side reline acrylic resins, Journal of Applied Oral Science 13/3 (2005) 291-295.
  • 24. K. Hiromori, K. Fujii, K. Inoue, Viscoelastic properties of denture base resins obtained by underwater test, Journal of Oral Rehabilitation 27 (2000) 522-531.
  • 25. D.M. Wong, L.Y. Cheng, T.W. Chow, R.K. Clark, Effect of processing method on the dimensional accuracy and water sorption of acrylic resin dentures, Journal of Prosthetic Dentistry 81 (1999) 300-304.
  • 26. S.H. Tuna, F. Keyf, et al., The evaluation of water sorption/solubility on various acrylic resins, European Journal of Dentistry 2/3 (2008) 191-197.
  • 27. M.J. Barsby, A denture base resin with low water absorption, Journal of Dentistry 20 (1992) 240-244.
  • 28. Z. Raszewski, D. Nowakowska, Mechanical properties of acrylic resin reinforced by nanofillers. Protetyka Stomatologiczna 60/6 (2010) 501-506 (in Polish).
  • 29. L. Mc Nally, DJ. O'Sullivan, D.C. Jagger, An in vitro investigation of the effect of the addition of untreated and surface treated silica on the transverse and impact strength of poly(methyl methacrylate) acrylic resin, Biomedical Materials and Engineering 16/2 (2006) 93-100.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bd402116-8687-478d-a4aa-ab54db128147
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.