Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 8 | 317--324
Tytuł artykułu

The Influence of Atmospheric Air Temperature on the Consumption of Natural Gas in Terms of Heating Costs of a Single-Family Building–A Case Study

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to determine the costs of heating a single-family detached home with natural gas during the heating season, considering the variability of atmospheric air temperature. In addition, this study composes a forecast of monthly costs incurred for heating a single-family detached home as an operational guideline for potential users of this type of residential building. The research was conducted during 7 heating seasons covering the years 2015–2022. Daily gas consumption was measured using an automatic gas consumption recorder. The ambient air temperature was gauged using the Nautilus 85 electronic sensor produced by the company ACR with a margin of error of 0.2°C. As a result of this analysis, it was calculated that the average number of days in the heating season is 232 days per year. The average consumption of natural gas for heating purposes is 1.438.1 m3/season. The average expense of heating a building during the heating season is 696 €. Due to determining a high correlation between the daily ambient air temperature and the amount of gas used for heating purposes, it is possible to predict the costs associated with heating the building in the upcoming heating season.
Wydawca

Rocznik
Strony
317--324
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • University of Agriculture of Krakow, Department of Sanitary Engineering and Water Management, Mickiewicza 24/28, 30-059 Kraków, Poland, p.bugajski@urk.edu.pl
  • University of Life Sciences in Lublin, Department of Agricultural, Forestry and Transport Machines, Głęboka 28, 20-612 Lublin, Poland, karolina.jozwiakowska@up.lublin.pl
  • University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska 117a, 10-719 Olsztyn, Poland, joanna.rodziewicz@uwm.edu.pl
  • University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska 117a, 10-719 Olsztyn, Poland, jawoj@uwm.edu.pl
  • City Hall in Nowy Targ, Krzywa 1, 34-400 Nowy Targ, Poland, eska13@tlen.pl
  • University of Life Sciences in Lublin, Department of Environmental Engineering and Geodesy, Leszczyńskiego 7, 20-069 Lublin, Poland, tadeusz.siwiec@up.lublin.pl
Bibliografia
  • 1. Bugajski P., Nowobilska–Majewska, E., Nowobilska–Luberda A., Bergel T. 2017. The use of geothermal waters in Podhale in terms of tourism and industrial applications. Journal of Ecological Engineering, 18(6), 185–191.
  • 2. Bugajski P. 2017. Zmienność oraz koszty zużycia gazu ziemnego w sezonie grzewczym w budynku jednorodzinnym. Gaz, Woda i Technika Sanitarna, 2, 45–46.
  • 3. Czaja J., Preweda E. 2000. Analiza statytyczna zmiennej losowej wielowymiarowej w aspekcie korelacji i predykcji. Geodezja, 6(2), 129–145.
  • 4. Eguiartea O., Agustín-Camachoa P., Portillo-Valdés L. 2022. Energy and economic analysis of domestic heating costs based on distributed energy resources: A case study in Spain. Energy Reports, 8, 56–61.
  • 5. Herbut P., Rzepczyński M., Angrecka S. 2019. The Analysis of efficiency and investment profitability of a solar water heating system in a multi-family building. Journal of Ecological Engineering, 19(6), 75–80.
  • 6. Huebner G.M., Hamilton I., Chalabi Z., Shipworth, D. Oreszczyn, T. 2018. Comparison of indoor temperatures of homes with recommended temperatures and effects of disability and age: an observational, cross- sectional study. BMJ Open; 8, e021085.
  • 7. Jóźwiak J., Podgórski J. 2021. Statistics from scratch. Polskie Wydawnictwo Ekonomiczne, Warszawa.
  • 8. Kulesza L., Maludziński B. 2021. Rozliczenie kosztów gazu ziemnego. Rynek Instalacyjny, 7–8, 27–28.
  • 9. Nakagami H., Akiyama H., Otsuka H., Iwamae A., Yamada A. 2022. Blood pressure fluctuations and the indoor environment in a highly insulated and airtight model house during the cold winter season. Hypertens. Res., 45, 1217–1219.
  • 10. Nowakowski E. 2008. Rozkład zużycia paliw gazowych w sezonie ogrzewczym. Rynek Instalacyjny, 6, 80–81.
  • 11. Operacz A., Zachora-Buławska A., Gonek Z., Tomaszewska B., Bielec B., Operacz T., Bundschuh J. 2024. Stability of geothermal waters parameters as a major factor guaranteeing the possibility of its use and discharge into the environment. Water Resources and Industry, 31, 100233.
  • 12. Paliński A. 2019. Prognozowanie zapotrzebowania na gaz metodami sztucznej inteligencji. Nafta-Gaz, 2, 111–117.
  • 13. Schreurs T., Madani H. Zottl A., Sommerfeldt N., Zucker G. 2012. Techno-economic analysis of combined heat pump and solar PV system for multi--family houses: An Austrian case study. Energy Strategy Reviews, 36, 100666.
  • 14. Sellaro R., Hommel B., Manaï M., Colzato L.S. 2015. Preferred, but not objective temperature predicts working memory depletion. Psychological Research, 79(2), 282–288.
  • 15. Ściążko M. 2009. Technologiczne i ekonomiczne bariery usuwania dwutlenku węgla w układach energetycznych. Polityka Energetyczna. 2(2/1), 73–90.
  • 16. Seri F., Arnesano M., Keane M.M., Revel G.M. 2021. Temperature Sensing Optimization for Home Thermostat Retrofit. Sensors, 21, 3685.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bd3fcf53-e9e7-43de-9507-2019cb630507
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.