Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | T. 40, z. 1 | 233--246
Tytuł artykułu

Host-rock characteristics and geochemistry of the Rongkong Opal-C Mineraloid, North Luwu Regency, South Sulawesi Province, Indonesia

Treść / Zawartość
Warianty tytułu
PL
Charakterystyka skały macierzystej i geochemia minerałoidu Rongkong Opal-C, region Północnego Luwu, prowincja Południowe Sulawesi, Indonezja
Języki publikacji
EN
Abstrakty
EN
Opal can be found in several locations, including America, Tanzania, Brazil, Mexico, East Africa, Indonesia and Australia, which is now the world’s top producer of black opal. One of the most economically valuable gems in the world is the mineraloid opal. In the Rongkong area, opal is found in the host rock of volcanic igneous rock, namely andesite. This study aims to determine the opal mineraloid host-rock’s microstructural characteristics and the elemental and compound content of the opal mineraloid host-rock’s geochemistry in the Rongkong area, Indonesia. The research took three samples in the field as large as hand specimens. The three samples were one host-rock sample and two opal mineraloid samples; the samples were then prepared and analyzed in the laboratory. Laboratory analysis was performed using SEM-EDS, XRF and petrographic analyses. The results of the SEM-EDS test analysis showed that most opal mineraloid carrier rock constituents are aluminum and oxide. This can be seen from the substantial Al and O content. In samples 1 and 2, Al, O, Ca and P with the highest composition of chemical compounds are Al2O3, CaO, and P2O5. The Rongkong opal mineraloid from Limbong Village, Rongkong District, North Luwu Regency, South Sulawesi, based on the results of XRF analysis, contains the chemical compounds SiO2, Al2O3, K2O, Fe2O3, CaO, TiO2, RuO2, SrO, MnO, V2O5, Rb2O, Ag2O and CuO. The content compound that is more dominant in opal mineraloids is SiO2 due to silicate enrichment in the forming of opal mineraloids.
PL
Opal można znaleźć w kilku miejscach, w tym w Ameryce, Tanzanii, Brazylii, Meksyku, Afryce Wschodniej, Indonezji i Australii, która jest obecnie największym na świecie producentem czarnego opalu. Jednym z najcenniejszych ekonomicznie klejnotów na świecie jest opal mineraloidalny. W obszarze Rongkong opal znajduje się w skale macierzystej wulkanicznej skały magmowej, a mianowicie w andezycie. Niniejsze badanie ma na celu określenie charakterystyki mikrostrukturalnej skały macierzystej opalu oraz zawartości pierwiastków i związków w geochemii skały macierzystej opalu w obszarze Rongkong w Indonezji. W ramach badań pobrano w terenie trzy próbki wielkości próbek ręcznych. Trzy próbki stanowiły jedną próbkę skały macierzystej i dwie próbki mineraloidu opalu; próbki zostały następnie przygotowane i przeanalizowane w laboratorium. Analiza laboratoryjna została przeprowadzona przy użyciu SEM-EDS, XRF i analiz petrograficznych. Wyniki analizy testowej SEM-EDS wykazały, że większość składników skały nośnej opalu to aluminium i tlenek. Widać to po znacznej zawartości Al i O. W próbkach 1 i 2 Al, O, Ca i P o najwyższym składzie związków chemicznych to Al2O3, CaO i P2O5. Minerał opalowy Rongkong z Limbong Village, Rongkong District, North Luwu Regency, South Sulawesi, w oparciu o wyniki analizy XRF, zawiera związki chemiczne SiO2, Al2O3, K2O, Fe2O3, CaO, TiO2, RuO2, SrO, MnO, V2O5, Rb2O, Ag2O i CuO. Składnikiem, który jest bardziej dominujący w mineraloidach opalowych, jest SiO2 ze względu na wzbogacenie krzemianów w tworzeniu mineraloidów opalowych.
Wydawca

Rocznik
Strony
233--246
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Universitas Muslim Indonesia, Indonesia
autor
  • Universitas Muslim Indonesia, Indonesia
  • Universitas Muslim Indonesia, Indonesia
Bibliografia
  • [1] Ansori, C. 2008. Research and Development Center for Mineral and Coal Technology (Puslitbang teknologi mineral dan batubara). Jurnal Bahan Galian Industri 12, pp. 20-31 (in Indonesian).
  • [2] Ansori, C. 2010. Mineralization Model of Banten Opal Formation (Model Mineralisasi Pembentukan Opal Banten). Indonesian Journal on Geoscience 5(3), DOI: 10.17014/ijog.v5i3.100 (in Indonesian).
  • [3] Ansori et al. 2003 – Ansori, C., Siregar, S. and dan Sumantri, T.A.F. 2003. Preliminary Study of Opal Genesis at Lebak Regency, Banten. Proceedings Internasional Conference On Mineral and Energy Resources Management UPN ‘Veteran’, Yogyakarta.
  • [4] Azarine et al. 2021 – Azarine, A., Arba, Azzaman, M. and Idrus, A. 2021. Characteristics of Alteration and Mineralization of Carlin Type Gold Deposits in the Yance and Leon Blocks, Ratatotok District, Southeast Minahasa Regency, North Sulawesi Province (Karakteristik Alterasi dan Mineralisasi Endapan Emas Tipe Carlin pada Blok Yance dan Leon, Kecamatan Ratatotok, Kabupaten Minahasa Tenggara, Provinsi Sulawesi Utara). Jurnal Geomine 9(3), pp. 239-253, DOI: 10.33536/jg.v9i3.1001 (in Indonesian).
  • [5] Banerjee, A. and Wenzel, T. 1999. Black opal from Honduras. European Journal of Mineralogy 11(2), pp. 401-408, DOI: 10.1127/ejm/11/2/0401.
  • [6] Boboň et al. 2011 – Boboň, M., Christy, A.A., Kluvanec, D. and Illášová, L. 2011. State of water molecules and silanol groups in opal minerals: A near infrared spectroscopic study of opals from Slovakia. Physics and Chemistry of Minerals 38(10), pp. 809-818, DOI: 10.1007/s00269-011-0453-0.
  • [7] Costanzo, A. 2019. Dendritic Opal from Brazil. The Journal of Gemmology 36, pp. 504-505, DOI: 10.15506/jog.2019.36.6.504.
  • [8] Curtis et al. 2022 – Curtis, N.J., Gascooke, J.R., Johnston, M.R. and Pring, A. 2022. 29Si Solid-State NMR Analysis of Opal-AG, Opal-AN and Opal-CT: Single Pulse Spectroscopy and Spin-Lattice T1 Relaxometry. Minerals 12(3), DOI: 10.3390/min12030323.
  • [9] Davies, R.J. and Cartwright, J. 2002. A fossilized Opal A to Opal C/T transformation on the northeast Atlantic margin: support for a significantly elevated Palaeogeothermal gradient during the Neogene? Basin Research 14(4), pp. 467-486, DOI: 10.1046/j.1365-2117.2002.00184.x.
  • [10] Day, R. and Jones, B. 2008. Variations in Water Content in Opal-A and Opal-CT from Geyser Discharge Aprons. Journal of Sedimentary Research 78, pp. 301-15, DOI: 10.2110/jsr.2008.030.
  • [11] Federman, D. 1990. Australian White Opal. Modern Jeweler’s Consumer Guide to Colored Gemstones, pp. 130-133, DOI: 10.1007/978-1-4684-6488-7_31.
  • [12] Fröhlich F. 2020. The opal-CT nanostructure. Journal of Non-Crystalline Solids 533, DOI: 10.1016/j.jnoncrysol.2020.119938.
  • [13] Graetsch et al. 1994 – Graetsch, H., Gies, H. and Topalovi, I. 1994. NMR, XRD and IR study on microcrystalline opals. Physics and Chemistry of Minerals 21(3), pp. 166-167, DOI: 10.1007/BF00203147.
  • [14] Jones, J.B. and Segnit, E.R. 1970. The nature of opal I. nomenclature and constituent phases. Journal of the Geological Society of Australia 18(1), pp. 57-68, DOI: 10.1080/00167617108728743.
  • [15] Jones, B. and Renaur, R.W. 2007. Microstructural changes accompanying the opal-A to opal-CT transition: new evidence from the siliceous sinters of Geysir, Haukadalur, Iceland. Sedimentology 54(4), pp. 921-948.
  • [16] Julinawati et al. 2015 – Julinawati, M., Nasution, R., Kimia, S.J., Matematika, F., Ilmu, D. and Alam, P. 2015. Applying Sem-edx Techniques to Identifying the Types of Mineral of Jades (Giok) Takengon, Aceh. Jurnal Natural 15(2).
  • [17] Kano, K. and Taguchi, K. 1982. Experimental study on the ordering of opal-CT. Geochemical Journal 16(1), pp. 33-41, DOI: 10.2343/geochemj.16.33.
  • [18] Kuramoto et al. 1992 – Kuramoto, S., Tamaki, K., Langseth, M.G., Nobes, D.C., Tokuyama, H., Pisciotto, K.A., et al. 1992. 73 Can Opal-A/Opal-CT BSR Be an Indicator of the Thermal Structure of the Yamato Basin, Japan Sea? Proceedings of the Ocean Drilling Program, 127/128 Scientific Results 1992, DOI: 10.2973/odp.proc.sr.127128.235.1992.
  • [19] Lynne, B.Y. and Campbell, K.A. 2004. Morphologic and Mineralogic Transitions From Opal-A to Opal-CT in Low-Temperature Siliceous Sinter Diagenesis, Taupo Volcanic Zone, New Zealand. Journal of Sedimentary Research 74(4), pp. 561-579, DOI: 10.1306/011704740561.
  • [20] Lynne et al. 2005 – Lynne, B.Y., Campbell, K.A., Moore, J.N. and Browne, P.R.L. 2005. Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, USA. Sedimentary Geology 179(3-4), pp. 249-278, DOI: 10.1016/j.sedgeo.2005.05.012.
  • [21] Megaw et al. 2018 – Megaw, P.K.M., Fritsch, E., Spano, T.L., Gray, M. 2018. Geology and Mineralogy of Electric OpalTM: Green Daylight-Luminescing Hyalite Opal from Zacatecas, Mexico. Rocks & Minerals 93(5), pp. 404-413, DOI: 10.1080/00357529.2018.1477007.
  • [22] Mishchenko et al. 2012 – Mishchenko, L., Hatton, B., Kolle, M. and Aizenberg, J. 2012. Patterning Hierarchy in Direct and Inverse Opal Crystals. Small 8(12), DOI: 10.1002/smll.201290067.
  • [23] Munasir et al 2012 – Munasir, M., Triwikantoro, T., Zainuri, M. and Darminto, D. 2012. Uji XRD dan XRF pada Bahan Meneral (Batuan dan Pasir) Sebagai Sumber Material Cerdas (CaCO3 dan SiO2). Jurnal Penelitian Fisika Dan Aplikasinya (JPFA) 2(1), pp. 20-29, DOI: 10.26740/jpfa.v2n1.p20-29.
  • [24] Olliver, J.G. and Townsend, I.J. 1993. Gemstones in Australia. NSW : Mockridge, Bulmer Pty Ltd, St. Leonards.
  • [25] Silvia, L. and Zainuri, M. 2020. Analisis Silika (SiO2) Hasil Kopresipitasi Berbasis Bahan Alam menggunakan Uji XRF dan XRD. Jurnal Fisika Dan Aplikasinya 16(1), pp. 12, DOI: 10.12962/j24604682.v16i1.5322.
  • [26] Štubňa, J. and Hanus, R. 2020. Yellow Opal from Tanzania. The Journal of Gemmology 37, pp. 10-1, DOI: 10.15506/jog.2020.37.1.10.
  • [27] Thamsi et al. 2020 – Thamsi, A.B., Aswadi, M., Anwar, H., Bakri, H., Wakila, M.H. and Heriansyah, A.F. 2020. Characteristics of Limbong Opal Mineraloids, North Luwu Regency, South Sulawesi Province (Karakteristik Mineraloid Opal Limbong, Kabupaten Luwu Utara, Provinsi Sulawesi Selatan). Jurnal Geomine 8(3), pp. 220-227, DOI: 10.33536/jg.v8i3.735 (in Indonesian).
  • [28] Tutu et al. 2015 – Tutu, R., Subaer, S. and Usman, U. 2015. Study of characterization and microstructure analysis of mineral sediments from Sulili hot spring springs in Pinrang Regency (Studi analisis karakterisasi dan mikrostruktur mineral sedimen sumber air panas Sulili di Kabupaten Pinrang). Jurnal Sains Dan Pendidikan Fisika 11(2), pp. 192-201, DOI: 10.35580/JSPF.V11I2.1488 (in Indonesian).
  • [29] Walewangko et al. 2021 – Walewangko, Y., Bujung, C.A.N. and Rende, J.C. 2021. Analisis komposisi unsur dan jenis mineral batuan gunungapi Soputan menggunakan SEM-EDX dan FTIR. Jurnal Fista: Fisika Dan Terapannya 2(1), pp. 55-60, DOI: 10.53682/fista.v2i1.107.
  • [30] Watkins, J.J. 1985. Future prospects for opal mining in the Lightning Ridge region. New South Wales.
  • [31] Wilson, M.J. 2014 – The structure of opal-CT revisited. Journal of Non-Crystalline Solids 405, pp. 68-75, DOI: 10.1016/j.jnoncrysol.2014.08.052.
  • [32] Vysotsky et al. 2010 – Vysotsky, S.V., Barkar, A.V., Kuryavy, V.G., Chusovitin, E.A., Karabtsov, A.A. and Safronov, P.P. 2010. Hydrothermal Noble Opal: Struct
  • ure and Genesis. Geology of Ore Deposits 52(8), pp. 815-820, DOI: 10.1134/S1075701510080131.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bd29db1a-53a4-47f1-b216-9095eb514931
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.