Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 2 | art. no. e102, 1--16
Tytuł artykułu

Effect of grinding conditions on the friction and wear performance of Ni based singlecrystal superalloy

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, four types of surfaces were prepared as follows: untreated one, dry grinding (DG), wet grinding (WG) and minimum quantity lubrication grinding (MQLG) for Ni-based single crystal superalloy. The effects of grinding conditions on the surface roughness and microstructure evolution were studied. Dry sliding tests of ground surfaces were carried out at room temperature. Through the quantitative characterization of the wear rate, the area, width and depth of the worn profiles, the friction and wear mechanism of superalloy prepared by different grinding conditions were analyzed. The results show that the MQLG surface with low surface roughness and work hardening behavior has the best wear resistance. The element transfer behavior from the GCr15 ball to the worn surface was detected by EDS analysis. The wear type is mainly abrasive wear, accompanied by slight adhesive wear and oxidation wear. It is shown that high-quality surface with nanocrystalline and high density dislocation structure produced by MQLG improves the tribological properties of superalloy, which provide theoretical guidance for the surface machining of single crystal blade to reduce fretting wear.
Wydawca

Rocznik
Strony
art. no. e102, 1--16
Opis fizyczny
Bibliogr. 46 poz., il., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang, China , 15840145431@163.com
autor
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang, China , gongyd@mail.neu.edu.cn
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang, China
autor
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang, China
autor
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang, China
autor
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang, China
Bibliografia
  • 1. Zainul H. Energy-efficient gas-turbine blade-material technology - a review. Materiali in tehnologije/Materials and technology. 2017;51:355-361. https://doi.org/10.17222/mit.2015.196.
  • 2. Sun S, Li L, Yue Z, Yang W, Zhao Z, Cao R, Li S. Experimental and numerical investigation on fretting fatigue behavior of Nickel-based single crystal superalloy at high temperature. Mech Mater. 2020;150: 103595. https://doi.org/10.1016/j.mechmat.2020.103595.
  • 3. Han QN, Qiu W, He Z, Su Y, Ma X, Shi HJ. The efect of crystal orientation on fretting fatigue crack formation in Ni-based single-crystal superalloys: in-situ SEM observation and crystal plasticity finite element simulation. Tribol Int. 2018;125:209-219. https://doi.org/10.1016/j.triboint.2018.01.011.
  • 4. Gong Y, Zhou Y, Wen X, Cheng J, Sun Y, Ma L. Experimental study on micro-grinding force and subsurface microstructure of nickel-based single crystal superalloy in micro grinding. J Mech Sci Technol. 2017;31:3397-410. https://doi.org/10.1007/s12206-017-0629-8.
  • 5. Sun Y, Jin L, Gong Y, Wen X, Yin G, Wen Q, Tang B. Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. J Manuf Process. 2022;73:799-814. https://doi.org/10.1016/j.jmapro.2021.11.049.
  • 6. Qu S, Yao P, Gong Y, Yang Y, Chu D, Zhu Q. Modelling and grinding characteristics of unidirectional C-SiCs. Ceram Int. 2021. https://doi.org/10.1016/j.ceramint.2021.12.036.
  • 7. Chen Z, Colliander MH, Sundell G, Peng RL, Zhou J, Johansson S, Moverare J. Nano-scale characterization of white layer in broached Inconel 718. Mater Sci Eng A. 2017;684:373-384. https://doi.org/10.1016/j.msea.2016.12.045.
  • 8. Wang Y, Deng Y, Xiu S. Study on the dynamic recrystallization mechanism during pre-stress dry grinding. J Manuf Process. 2018;32:100-109. https://doi.org/10.1016/j.jmapro.2018.01.021.
  • 9. Zhang J, Ge P, Zhang L, Yu Y, Li H. Study on the friction and wear behavior of grind-hardened layer. Key Eng Mater. 2010;431-432:385-388. https://doi.org/10.4028/www.scientifc. net/KEM.431-432.385.
  • 10. Sahu JN, Sasikumar C. Development of hard and wear resistant surface coating on Ni-Cr-Mo steel by surface mechano-chemical carburization treatment (SMCT). J Mater Process Technol. 2019;263:285-295. https://doi.org/10.1016/j.jmatprotec.2018.08. 027.
  • 11. Bisht A, Gaddam S, Kumar L, Dileep BP, Suwas S. Precipitation behavior of IN718 after surface mechanical attrition treatment (SMAT) and its effect on wear properties. Jom. 2018;70:2667-76. https://doi.org/10.1007/s11837-018-3134-3.
  • 12. Chen X, Han Z, Lu K. Friction and wear reduction in copper with a gradient nano-grained surface layer. ACS Appl Mater Interfaces. 2018;10:13829-38. https://doi.org/10.1021/acsami. 8b01205.
  • 13. Cho DH, Lee SA, Lee YZ. Mechanical properties and wear behavior of the white layer. Tribol Lett. 2012;45:123-129. https://doi.org/ 10.1007/s11249-011-9869-4.
  • 14. Fangyuan Z, Chunzheng D, Wei S, Kang J. Influence of white layer and residual stress induced by hard cutting on wear resistance during sliding friction. J Mater Eng Perform. 2019;28:7649-62. https://doi.org/10.1007/s11665-019-04479-0.
  • 15. Yang YY, Fang HS, Huang WG. A study on wear resistance of the white layer. Tribol Int. 1996;29:425-428. https://doi.org/10.1016/ 0301-679X(95)00099-P.
  • 16. Guo YB, Waikar RA. An experimental study on the effect of machining-induced white layer on frictional and wear performance at dry and lubricated sliding contact. Tribol Trans. 2010;53:127-136. https://doi.org/10.1080/10402000903283250.
  • 17. Li Z, Zheng K, Liao W, Xiao X. Tribological properties of surface topography in ultrasonic vibration-assisted grinding of zirconia ceramics. Proceedings Institute Mechanical Engineering Part C. J Mech Eng Sci. 2018;232:4203–15. https://doi.org/10.1177/09544 06217747914.
  • 18. Menezes PL, Kishore SV. Kailas, influence of surface texture and roughness parameters on friction and transfer layer formation during sliding of aluminium pin on steel plate. Wear. 2009;267:1534-1549. https://doi.org/10.1016/j.wear.2009.06.003.
  • 19. Liang G, Schmauder S, Lyu M, Schneider Y, Zhang C, Han Y. An investigation of the influence of initial roughness on the friction and wear behavior of ground surfaces. Materials. 2018. https://doi.org/ 10.3390/ma11020237.
  • 20. Federici M, Menapace C, Moscatelli A, Gialanella S, Strafelini G. Effect of roughness on the wear behavior of HVOF coatings dry sliding against a friction material. Wear. 2016;368-369:326-34. https:// doi.org/10.1016/j.wear.2016.10.013.
  • 21. Zhu Y, Chen X, Zou J, Yang H. A study on the influence of surface topography on the low-speed tribological performance of port plates in axial piston pumps. Wear. 2015;338-339:406-417. https://doi.org/10.1016/j.wear.2015.07.016.
  • 22. Majumdar S, Das P, Kumar S, Roy D, Chakraborty S. Evaluation of cutting fluid application in surface grinding. Meas J Int Meas Confed. 2021;169: 108464. https://doi.org/10.1016/j.measurement. 2020.108464.
  • 23. Race A, Zwierzak I, Secker J, Walsh J, Carrell J, Slatter T, Maurotto A. Environmentally sustainable cooling strategies in milling of SA516: effects on surface integrity of dry, food and MQL machining. J Clean Prod. 2021;288: 125580. https://doi.org/10.1016/j.jclep ro.2020.125580.
  • 24. Rong T, Gu D, Shi Q, Cao S, Xia M. Effects of tailored gradient interface on wear properties of WC/Inconel 718 composites using selective laser melting. Surf Coatings Technol. 2016;307:418-427. https://doi.org/10.1016/j.surfcoat.2016.09.011.
  • 25. Shi R, Wang B, Yan Z, Wang Z, Dong L. Effect of surface topography parameters on friction and wear of random rough surface. Materials. 2019. https://doi.org/10.3390/ma12172762.
  • 26. Kundrak J, Gyani K, Bana V. Roughness of ground and hard-turned surfaces on the basis of 3D parameters. Int J Adv Manuf Technol. 2008;38:110-119. https://doi.org/10.1007/s00170-007-1086-9.
  • 27. Chen L, Liu Z, Wang X, Wang Q, Liang X. Effects of surface rough ness parameters on tribological performance for micro-textured eutectic aluminum-silicon alloy. J Tribol. 2020;142:1-13. https:// doi.org/10.1115/1.4044990.
  • 28. Dzierwa A. Influence of surface preparation on surface topography and tribological behaviours. Arch Civ Mech Eng. 2017;17:502-510. https://doi.org/10.1016/j.acme.2016.12.004.
  • 29. Xu Y, Gong Y, Wang Z, Wen X, Yin G, Zhang H, Qi Y. Experimental study of Ni-based single-crystal superalloy: Microstructure evolution and work hardening of ground subsurface. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s43452-021-00203-9.
  • 30. Saberi A, Rahimi AR, Parsa H, Ashrafjou M, Rabiei F. Improvement of surface grinding process performance of CK45 soft steel by minimum quantity lubrication (MQL) technique using compressed cold air jet from vortex tube. J Clean Prod. 2016;131:728-738. https://doi.org/10.1016/j.jclepro.2016.04.104.
  • 31. Ji R, Yang Z, Jin H, Liu Y, Wang H, Zheng Q, Cheng W, Cai B, Li X. Surface nanocrystallization and enhanced surface mechanical properties of nickel-based superalloy by coupled electric pulse and ultrasonic treatment. Surf Coatings Technol. 2019;375:292-302. https://doi.org/10.1016/j.surfcoat.2019.07.037.
  • 32. Anand Kumar S, Ganesh Sundararaman S, Sankara Narayanan TSN, Gnanamoorthy R. Fretting wear behaviour of surface mechanical attrition treated alloy 718. Surf Coatings Technol. 2012;206:4425-4432. https://doi.org/10.1016/j.surfcoat.2012.04.085.
  • 33. Xia S, Liu Y, Fu D, Jin B, Lu J. Effect of surface mechanical attrition treatment on tribological behavior of the AZ31 alloy. J Mater Sci Technol. 2016;32:1245-1252. https://doi.org/10.1016/j.jmst.2016.05. 18.
  • 34. Liu Y, Jin B, Li DJ, Zeng XQ, Lu J. Wear behavior of nanocrystalline structured magnesium alloy induced by surface mechanical attrition treatment. Surf Coatings Technol. 2015;261:219-226. https://doi.org/ 10.1016/j.surfcoat.2014.11.026.
  • 35. Grifths BJ. Mechanisms of white layer generation with reference to machining and deformation processes. J Tribol. 1987;109:525-530. https://doi.org/10.1115/1.3261495.
  • 36. Liao Z, Polyakov M, Diaz OG, Axinte D, Mohanty G, Maeder X, Michler J, Hardy M. Grain refinement mechanism of nickel-based superalloy by severe plastic deformation - Mechanical machining case. Acta Mater. 2019;180:2-14. https://doi.org/10.1016/j.actam at.2019.08.059.
  • 37. Ren X-P, Liu Z-Q. Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy. Int J Miner Metall Mater. 2018;25:937-949. https://doi.org/10. 1007/s12613-018-1643-2.
  • 38. Straffelini G, Avi G, Pellizzari M. Effect of three nitriding treatments on tribological performance of 42CrAlMo7 steel in boundary lubrication. Wear. 2002;252:870-879. https://doi.org/10.1016/S0043-1648(02)00043-1.
  • 39. Pellizzari M, Cipolloni G. Tribological behaviour of Cu based materials produced by mechanical milling/alloying and spark plasma sintering. Wear. 2017;376-377:958-967. https://doi.org/10.1016/j.wear. 2016.11.050.
  • 40. Mahmoudi A, Esmailian M. Wear behavior of white layer in plasma nitrided H13 steel at ambient and elevated temperatures. Adv Mater Res. 2010;83-86:41-48. https://doi.org/10.4028/www.scientifc.net/ AMR.83-86.41.
  • 41. Ren Y, Wan H, Chen Y, Zhu H, Lu H, Ren X. Effect of laser shock peening and carbonitriding on tribological properties of 20Cr2M n2Mo steel alloy under dry sliding conditions. Surf Coatings Technol. 2021;417: 127215. https://doi.org/10.1016/j.surfcoat.2021. 127215.
  • 42. Karamis MB, Gercekcioglu E. Wear behaviour of plasma nitrided steels at ambient and elevated temperatures. Wear. 2000;243:76-84. https://doi.org/10.1016/S0043-1648(00)00426-9.
  • 43. Maurel P, Weiss L, Bocher P, Fleury E, Grosdidier T. Oxide dependent wear mechanisms of titanium against a steel counterface: Influence of SMAT nanostructured surface. Wear. 2019;430-431:245-255. https://doi.org/10.1016/j.wear.2019.05.007.
  • 44. Stoyanov P, Dawag L, Goberman DG, Shah D. Friction and wear characteristics of single crystal ni-based superalloys at elevated temperatures. Tribol Lett. 2018;66:1-9. https://doi.org/10.1007/ s11249-018-0994-1.
  • 45. Hashimoto F, Guo YB, Warren AW. Surface integrity difference between hard turned and ground surfaces and its impact on fatigue life. CIRP Ann-Manuf Technol. 2006;55:81-84. https://doi.org/10. 1016/S0007-8506(07)60371-0.
  • 46. Zhang F-Y, Duan C-Z, Wang M-J, Sun W. White and dark layer formation mechanism in hard cutting of AISI52100 steel. J Manuf Process. 2018;32:878-887. https://doi.org/10.1016/j.jmapro.2018.04.011.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bd0b5dc8-1e7a-446f-b4de-cb5eadea7657
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.