Warianty tytułu
Języki publikacji
Abstrakty
The work covers the issues related to the diagnosis of selected occupational safety hazards in Polish wood processing enterprises. The main objective is to build models in order to identify occupational accident profiles in these enterprises on the basis of individual records characterizing the casualties, provided by Statistics Poland. The modelling task employed the latent class analysis (LCA) data mining technique. In order to enhance the process of building the LCA model and to support the procedure of selecting input variables relevant to the model, an iterative algorithm was elaborated by the authors. The impact of an enterprise size on occupational accident consequences was statistically confirmed. Following this result, LCA models were developed independently for smaller (micro and small), and for larger (medium and large) enterprises. Latent classes, presenting occupational accident profiles, were visualized in the form of heat maps. Similarities and differences between the occupational accident profiles identified for the two types of enterprises were indicated. It has been shown that employees of smaller enterprises are at greater risk of suffering more serious injury from accidents at work than employees of larger enterprises. However, in both cases, the most critical latent classes concern occupational accidents related to operating machinery; they affect workers with a low level of job seniority, and result in injuries (often traumatic amputations) involving upper limbs in particular.
Rocznik
Tom
Strony
329--346
Opis fizyczny
Bibliogr. 39 poz., fig., tab.
Twórcy
autor
- Faculty of Management and Computer Modelling, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland, spimn@tu.kielce.pl
autor
- Faculty of Management and Computer Modelling, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland, m.pajecki@tu.kielce.pl
Bibliografia
- 1. Józwik J., Pietras P. Investigation and assessment of occupational risk on the metal cutting machine tool stand. Advances in Science and Technology Research Journal 2013; 7(20): 47–54, doi: 10.5604/20804075.1073057.
- 2. Yilmaz F., Ozcan M.S. A risk analysis and ranking application for lifting vehicles used in construction sites with integrated AHP and Fine-Kinney approach. Advances in Science and Technology Research Journal 2019; 13(3): 152–161, doi: 10.12913/22998624/111779.
- 3. Clarivate. KeyWords Plus generation, creation, and changes, from http://support.clarivate.com/ScientificandAcademicResearch/s/article/Key-Words-Plus-generation-creation-and-changes?language=en_US (Accessed: 10.02.2023).
- 4. Elsevier. Scopus Content Coverage Guide, from https://www.elsevier.com/?a=69451 (Accessed: 15.04.2023).
- 5. Boyack K.B. Mapping knowledge domains: Characterizing PNAS. In: Proceedings of the National Academy of Sciences of the United States of America National Academy of Sciences, USA, 2004; 01(1): 5192–5199.
- 6. Van Eck N.J., Waltman L. VOSviewer Manual. Manual for VOSviewer version 1.6.15, Universiteit Leiden, Leiden, Netherlands, from https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.15.pdf (Accessed: 11.12.2022).
- 7. BydTermCymru. The meaning of ‘term’ and ‘terminology standardization’. Llywodraeth Cymru Welsh Government, from https://gov.wales/bydter-mcymru/how-to-use/meaning-term-and-terminology-standardization (Accessed: 12.09.2019).
- 8. Brzozowska-Rup K., Nowakowska M. Bibliometric Studies on Renewable Energy—Poland Compared to Other EU Countries. Energies 2022; 15(13): 4577, doi: 10.3390/en15134577.
- 9. Varonen U., Mattila M. The safety climate and its relationship to safety practices, safety of the work environment and occupational accidents in eight wood-processing companies. Accident Analysis & Prevention 2000; 32(6): 761–769, doi: 10.1016/s0001-4575(99)00129-3.
- 10. Alamgir H., Koehoorn M., Ostry A., Tompa E., Demers P. An evaluation of hospital discharge records as a tool for serious work related injury surveillance. Occupational and Environmental Medicine 2006; 63(4): 290–296, doi: 10.1136%2Foem.2005.026047.
- 11. Holcroft C.A., Punnett L. Work environment risk factors for injuries in wood processing. Journal of Safety Research 2009; 40(4): 247–255, doi: 10.1016/j.jsr.2009.05.001.
- 12. Palamara F., Piglione F., Piccinini N. Self-Organizing Map and clustering algorithms for the analysis of occupational accident databases. Safety Science 2011; 49(8–9): 1215–1230, doi: 10.1016/j.ssci.2011.04.003.
- 13. Thepaksorn P., Thongjerm S., Incharoen S., Siriwong W., Harada K., Koizumi A. Job safety analysis and hazard identification for work accident prevention in para rubber wood sawmills in southern Thailand. Journal of Occupational Health 2017; 59(6): 542–551, doi: 10.1539/joh.16-0204-CS.
- 14. Tremblay A., Badri A. A novel tool for evaluating occupational health and safety performance in small and medium-sized enterprises: The case of the Quebec forestry/pulp and paper industry. Safety Science 2018; 101: 282–294, doi: 10.1016/j.ssci.2017.09.017.
- 15. Comberti L., Demichela M., Baldissone G., Fois G., Luzzi R. Large occupational accidents data analysis with a coupled unsupervised algorithm: The S.O.M. K-Means Method. An Application to the Wood Industry. Safety 2018; 4(4): 51, doi: 10.3390/safety4040051.
- 16. Aragón-Vásquez A.Y., Silva-Lugo E.D., Nájera-Luna J.A., Hernández-Díaz J.C., Hernández F.J., Cruz-Carrera R.D. Perception of occupational risk factors in sawmills in the El Salto region of Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente 2019; 25(2): 253–268, doi: 10.5154/r.rchscfa.2019.01.005.
- 17. Karademir D., Koc K. Evaluating the work environment in turkish furniture industry from the point of occupational health and safety. Fresenius Environmental Bulletin 2020; 29(4A): 2639–2646.
- 18. Mulugeta H., Tefera Y., Gezu M. Nonfatal occupational injuries among workers in microscale and small-scale woodworking enterprise in Addis Ababa. Ethiopia. Journal of Environmental and Public Health 2020, 2020: 6407236, doi: 10.1155/2020/6407236.
- 19. Nowakowska M., Pajęcki M. Latent class analysis for identification of occupational accident casualty profiles in the selected Polish manufacturing sector. Advances in Production Engineering & Management 2021; 16(4): 485–499, doi: 10.14743/apem2021.4.415.
- 20. Araújo-Vila N., Toubes D.R., Fraiz-Brea J.A. The age factor in the analysis of occupational risks in the wood industry. Healthcare 2022; 10(7): 1355, doi: 10.3390/healthcare10071355.
- 21. Regulation of the Council of Ministers of 24 December 2007 on the Polish Classification of Activities (PKD), Journal of Laws of 2007, no. 251, item 1885, as amended.
- 22. Tei J.Y., Coxe S., Cham H. Statistical Power to Detect the Correct Number of Classes in Latent Profile Analysis. Structural Equation Modeling 2013; 20(4): 640–657, doi: 10.1080/10705511.2013.824781.
- 23. Collins L., Lanza S. Latent class and latent transaction analysis: with applications in the social, behavioral, and health sciences. A John Wiley & Sons. Inc., Hoboken, New Jersey, USA, 2010, doi: 10.1002/9780470567333.
- 24. Lanza S.T., Bray B.C., Collins L.M. An introduction to latent class and latent transition analysis. In: Schinka J.A., Velicer W.F., Weiner I.B. (ed.), Handbook of psychology, 2nd ed., Wiley, Hoboken, New Jersey, USA, 2013; 2: 691–716.
- 25. Weller B.E., Bowen N.K., Faubert S.J. Latent class analysis: a guide to best practice. Journal of Black Psychology 2020; 46(4): 287–311, doi: 10.1177/0095798420930932.
- 26. Masyn K.E. Latent class analysis and finite mixture modelling. In: Little T.D. (ed.), The Oxford handbook of quantitative methods: Statistical analysis, Oxford University Press, New York, NY, USA, 2013: 551–611, doi: 10.1093/oxfordhb/9780199934898.013.0025.
- 27. Dziak J.J., Coffman D.L., Lanza S.T., Li R., Jermiin L.S. Sensitivity and specificity of information criteria. Briefings in Bioinformatics 2020; 21(2): 553–565, doi: 10.1093/bib/bbz016.
- 28. Nylund-Gibson K., Choi A.Y. Ten frequently asked questions about latent class analysis. Translational Issues in Psychological Science 2018; 4(4): 440–461, doi: 10.1037/tps0000176.
- 29. Dziak J.J., Lanza S.T., Tan X. Effect size. statistical power and sample size requirements for the bootstrap likelihood ratio test in latent class analysis. Structural Equation Modeling 2014; 21(4): 534–552, doi: 10.1080/10705511.2014.919819.
- 30. Nylund K.L., Asparouhov T., Muthén B.O. Deciding on the number of classes in latent class analysis and growth mixture modeling: a monte carlo simulation study. Structural Equation Modeling; 14(4): 535–569, doi: 10.1080/10705510701575396.
- 31. Killian M.O., Cimino A.N., Weller B.E., Hyun Seo C. A systematic review of latent variable mixture modeling research in social work journals. Journal of Evidence-Based Social Work 2019; 16(2): 192–210, doi: 10.1080/23761407.2019.1577783.
- 32. Petersen K.J., Qualter P., Humphrey N. The application of latent class analysis for investigating population child mental health: a systematic review. Frontiers in Psychology 2019; 10(1214), doi: 10.3389/fpsyg.2019.01214.
- 33. Lanza S.T., Dziak J.J., Huang L., Wagner A.T., Collins L.M. Proc LCA & Proc LTA Users’ Guide (Version 1.3.2), PennState: The Methodology Center, The Pennsylvania State University, Philadelphia, USA, from https://www.methodology.psu.edu/ (Accessed: 20.01.2021).
- 34. Kim S.-Y. Determining the number of latent classes in single- and multiphase growth mixture models. Structural Equation Modeling 2014; 21(2): 263–279, doi: 10.1080/10705511.2014.882690.
- 35. Abdalla S., Apramian S.S., Cantley L.F., Cullen M.R. Occupation and Risk for Injuries. In: Mock C.N., Nugent R. Kobusingye O., Smith K.R.(ed.), Injury Prevention and Environmental Health, 3rd edition, Chapter 6, The International Bank for Reconstruction and Development, The World Bank, Washington (DC), USA, 2017: 97–132, doi: 10.1596/978-1-4648-0522-6_ch6.
- 36. Sinclair R.C., Cunningham T.R. Safety activities in small businesses. Safety Science 2014; 64: 32–38, doi: 10.1016/j.ssci.2013.11.022.
- 37. Haynes W. Bonferroni Correction. In: Dubitzky W., Wolkenhauer O., Cho K.H., Yokota H. (ed.), Encyclopedia of Systems Biology, Springer, New York, NY, USA, 2013 from https://doi.org/10.1007/978-1-4419-9863-7_1213 (Accessed: 16.03.2023).
- 38. Gelman A., Hill J., Yajima M. Why we (usually) don’t have to worry about multiple comparisons. Journal of Research on Educational Effectiveness 2012; 5(2): 189–211, doi: 10.1080/19345747.2011.618213.
- 39. Asparouhov T., Muthén B. Auxiliary variables in mixture modeling: three-step approaches using implus. Structural Equation Modeling 2014; 21(3): 329–341, doi: 10.1080/10705511.2014.915181.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bc9fea20-1814-42c7-98fe-85d4560f477f