Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 19, no. 4 | 1056--1071
Tytuł artykułu

Contractor selection for renovation of cultural heritage buildings by PROMETHEE method

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cultural heritage buildings have architectural, historical and cultural values creating one of the most dominant features, which is related to the local identity. Its preservation requires consideration, liability, know-how, know-why and experienced employee. Cultural heritage buildings' performance is complicated work, therefore selecting a contractor for heritage buildings' protection and restoration is a difficult assignment. The improper contractor's choice could activate cost overruns, lag, conflicts, declines, imperfect performance or added expenditure for project administration and accomplishment. This paper submits the quan-titative and qualitative criteria setting for selecting heritage's contractor. The Analytic Hierarchy Process technique is applied to decide important criteria and to get the weighting for each criterion. The PROMETHEE (Preference Ranking Organisation Method for Enrich-ment Evaluation) technique is applied for the selection of the most efficient cultural heritage contractor's alternative.
Wydawca

Rocznik
Strony
1056--1071
Opis fizyczny
Bibliogr. 64 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania
  • Department of Mathematical Statistics, Vilnius Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania
  • Institute of Sustainable Construction, Vilnius Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania, edmundas.zavadskas@vgtu.lt
  • Department of Graphical Systems, Vilnius Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania
Bibliografia
  • [1] V. Kutut, E.K. Zavadskas, M. Lazauskas, Assessment of priority alternatives for preservation of historic buildings using model base on ARAS and AHP methods, Arch. Civil Mech. Eng. 14 (2) (2014) 287–294. , http://dx.doi.org/10.1016/j. acme.2013.10.007.
  • [2] E.K. Zavadskas, T. Vilutiene, Z. Turskis, J. Šaparauskas, Multi- criteria analysis of projects' performance in construction, Arch. Civil Mech. Eng. 14 (1) (2014) 114–121. , http://dx.doi.org/ 10.1016/j.acme.2013.07.006.
  • [3] E.K. Zavadskas, Z. Turskis, T. Vilutiene, Multiple criteria analysis of foundation instalment alternatives by applying Additive Ratio Assessment (ARAS) method, Arch. Civil Mech. Eng. 10 (3) (2010) 123–141. , http://dx.doi.org/10.1016/S1644- 9665(12)60141-1.
  • [4] J. Curiel-Esparza, J. Canto-Perello, Selecting utilities placement techniques in urban underground engineering, Arch. Civil Mech. Eng. 13 (2) (2013) 276–285. , http://dx.doi.org/ 10.1016/j.acme.2013.02.001.
  • [5] F.A. Smarandache, Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic, American Research Press, Rehoboth, 1999.
  • [6] A. Jafari, A contractor pre-qualification model based on the quality function deployment method, Constr. Manage. Econ. 31 (7) (2013) 746–760. , http://dx.doi.org/10.1080/ 01446193.2013.825045.
  • [7] S. Mitkus, E. Trinkuniene, Reasoned decisions in construction contracts evaluation, Technol. Econ. Dev. Econ. 14 (3) (2008) 402–416.
  • [8] C.H. Wong, G.D. Holt, P.A. Cooper, Lowest price or value? Investigation of UK construction clients' tender selection process, Constr. Manage. Econ. 18 (7) (2000) 767–774. , http:// dx.doi.org/10.1080/014461900433050.
  • [9] S.P. Fong, S.K. Choi, Final contractor selection using the analytic hierarchy process, Constr. Manage. Econ. 18 (5) (2000) 547–557. , http://dx.doi.org/10.1080/014461900407356.
  • [10] L.A. Hadidi, M.A. Khater, Loss prevention in turnaround maintenance project by selecting contractors based on safety criteria using the analytic hierarchy process (AHP), J. Loss Prev. Process Ind. 34 (2015) 115–126. , http://dx.doi.org/ 10.1016/j.jlp.2015.01.028.
  • [11] F. Chiang, V. Yu, P. Luarn, Construction contractor selection in Taiwan using AHP, Int. J. Eng. Technol. 9 (3) (2017) 211–215.
  • [12] H. Martin, J. Koyloss, F. Welch, An exploration of the consistency limits of the analytical hierarchy process and its impacts on contractor selection, Int. J. Constr. Manage. 18 (1) (2018) 14–25. , http://dx.doi.org/10.1080/15623599.2016.1230954.
  • [13] E.W.L. Cheng, H. Li, Contractor selection using the analytic network process, Constr. Manage. Econ. 22 (10) (2004) 1021– 1032. , http://dx.doi.org/10.1080/0144619042000202852.
  • [14] S. Hassim, R. Muniandy, A.H. Alias, P. Abdullah, Contruction tender price estimation standardization (TPES) in Malaysia: modeling using fuzzy neural network, Eng. Constr. Archit. Manage. 25 (3) (2018) 443–457. , http://dx.doi.org/10.1108/ ECAM-09-2016-0215.
  • [15] A. Kaklauskas, E.K. Zavadskas, S. Raslanas, R. Ginevicius, A. Komka, P. Malinauskas, Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: a Lithuania case, Energy Build. 38 (5) (2006) 454–462. , http://dx.doi.org/10.1016/j.enbuild.2005.08.005.
  • [16] E.K. Zavadskas, A. Kaklauskas, Z. Turskis, J. Tamošaitiene, Contractors selection multi-attribute model applying COPRAS method with grey interval numbers, in: ‘‘Continuous Optimization and Knowledge's-Based Technologies’’, EUROPT – 2008 Conf., 2008.
  • [17] W.K.M. Brauers, E.K. Zavadskas, Z. Turskis, T. Vilutiene, Multi-objective contractor's ranking by applying the MOORA method, J. Bus. Econ. Manage. 9 (4) (2008) 245–255.
  • [18] Y. Juan, Y. Perng, D. Castro-Lacouture, K. Lu, Housing refurbishment contractors selection based on a hybrid fuzzy-QFD approach, Autom. Constr. 18 (2) (2009) 139–144. , http://dx.doi.org/10.1016/j.autcon.2008.06.001.
  • [19] A. Niento-orote, F. Ruz-Vila, A fuzzy multi-criteria decision- making model for construction contractor prequalification, Autom. Constr. 25 (2012) 8–19. , http://dx.doi.org/10.1016/j. autcon.2012.04.004.
  • [20] S. Ulubeyli, A. Kazaz, Fuzzy multi-criteria decision making model for subcontractor selection in international construction projects, Technol. Econ. Dev. Econ. 22 (2) (2016) 201–234. , http://dx.doi.org/10.3846/20294913.2014.984363.
  • [21] M.R. Afshar, Y. Alipouri, M.H. Sebt, W.T. Chan, A type-2 fuzzy set model for contractor prequalification, Autom. Constr. 84 (2017) 356–366. , http://dx.doi.org/10.1016/j.autcon.2017.10.003.
  • [22] G. Polat, Subcontractor selection using the integration of AHP and PROMETHEE methods, J. Civil Eng. Manage. 22 (8) (2016) 1042–1054. , http://dx.doi.org/10.3846/13923730.2014.948910.
  • [23] O. Taylan, M.R. Kabli, C. Porcel, E. Herrera-Viedma, Contractor selection for construction projects using consensus tolls and big data, Int. J. Fuzzy Syst. 20 (4) (2018) 1267–1281.
  • [24] B. Vahdami, S. Meysam Mousavi, H. Hashemi, M. Mousakhami, R. Tavakkoli-Moghaddam, A new compromise solution method for fuzzy group decision-making problems with an application to the contractor selection, Eng. Appl. Artif. Intell. 26 (2) (2013) 779–788. , http://dx.doi.org/10.1016/j. engappai.2012.11.005.
  • [25] M. Keshavarz-Ghorabaee, M. Amiri, E.K. Zavadskas, Z. Turskis, J. Antucheviciene, A dynamic Fuzzy approach based on the EDAS method for multi criteria subcontractor evaluation, Information 9 (68) (2018) 1–15. , http://dx.doi.org/ 10.3390/info9030068.
  • [26] M. Crueza Borger de Araujo, L. Hazin Alencar, M. Miranda Mota, Model for contractor performance evaluation in construction industry, Int. Conf. Syst. Man Cybern. (2016), http://dx.doi.org/10.1109/SMC.2016.7844636.
  • [27] N. Semaan, M. Salem, A deterministic contractor selection decision support system for competitive building, Eng. Constr. Architect. Manage. 24 (1) (2017) 61–77. , http://dx.doi. org/10.1108/ECAM-06-2015-0094.
  • [28] O. Alptekin, N. Alptekin, Analysis of criteria influencing contractor selection using TOPSIS method, IOC Conf. Ser. Mater. Sci. Eng. 245 (2017).
  • [29] S.H. Fachrurrazi, S. Husin, Muniwansyah, Husaini, The subcontractor selection practice using ANN-multilayer, Int. J. Technol. 4 (2017) 761–772. , http://dx.doi.org/10.14716/ijtech. v8i4.9490.
  • [30] M. Darvish, M. Yasaei, A. Saeedi, Application of the graph theory and matrix methods to contractor ranking, Int. J. Project Manage. 27 (6) (2009) 610–619. , http://dx.doi.org/ 10.1016/j.ijproman.2008.10.004.
  • [31] E.K. Zavadskas, Z. Turskis, J. Tamošaitiene, Contractor selection of construction in a competitive environment, J. Bus. Econ. Manage. 9 (3) (2008) 181–187.
  • [32] M.E. Bayraktar, M. Hastak, A decision support system for selecting the optimal contracting strategy in highway work zone projects, Autom. Constr. 18 (6) (2009) 834–843. , http://dx. doi.org/10.1016/j.autcon.2009.03.007.
  • [33] M. Cheng, S. Kang, Integrated fuzzy preference relations with decision utilities for construction contractor selection, J. Chin. Inst. Eng. 35 (8) (2012) 1051–1063. , http://dx.doi.org/ 10.1080/02533839.2012.708510.
  • [34] E.K. Zavadskas, A. Kaklauskas, T. Vilutiene, Multicriteria evaluation of apartment blocks maintenance contractors: Lithuanian case study, Int. J. Strat. Prop. Manage. 13 (4) (2009) 319–338.
  • [35] G.D. Holt, Which contractor selection methodology, Int. J. Project Manage. 16 (3) (1998) 153–164. , http://dx.doi.org/ 10.1016/S0263-7863(97)00035-5.
  • [36] O. Kaplinki, L. Januzsz, Three phases of multifactor modelling of construction process, J. Civil Eng. Manage. 12 (2) (2006) 127– 134.
  • [37] Z. Hatush, M. Skitmore, Criteria for contractor selection, Constr. Manage. Econ. 15 (1) (1997) 19–38. , http://dx.doi.org/ 10.1080/014461997373088.
  • [38] Ž. Morkunaite, V. Podvezko, V. Kutut, Selection criteria for evaluating contractors of cultural heritage objects, Procedia Eng. 208 (2017) 90–97. , http://dx.doi.org/10.1016/j. proeng.2017.11.025.
  • [39] G. Polat, E. Eray, B.N. Bingol, An integrated fuzzy MCGDM approach for supplier selection problem, J. Civil Eng. Manage. 23 (7) (2017) 926–942. , http://dx.doi.org/10.3846/ 13923730.2017.1343201.
  • [40] N. El-Sawalhi, D. Eaton, R. Rustom, Contractor prequalification model: state-of-the-art, Int. J. Project Manage. 25 (5) (2007) 465–474. , http://dx.doi.org/10.1016/j. ijproman.2006.11.011.
  • [41] E.A. Chinyio, P.O. Olomolaiye, S.T. Kometa, F.C. Harris, A needs-based methodology for classifying construction clients and selecting contractors, Constr. Manage. Econ. 16 (1998) 91– 98. , http://dx.doi.org/10.1080/014461998372628.
  • [42] Y. Topcu, A decision model proposal for construction contractor selection in Turkey, Build. Environ. 39 (4) (2004) 469–481. , http://dx.doi.org/10.1016/j.buildenv.2003.09.009.
  • [43] A. Banaitis, N. Banaitiene, Analysis of criteria for contractors' qualification evaluation, Technol. Econ. Dev. Econ. 12 (4) (2006) 276–282.
  • [44] Z. Turskis, Multi-attribute contractors ranking method by applying ordering of feasible alternatives of solution in terms of prefer ability technique, Technol. Econ. Dev. Econ. 14 (2) (2008) 224–239.
  • [45] A. Enshassi, S. Mohamed, Z. Modough, Contractors' selection criteria: opinions of Palestinian construction professionals, Int. J. Constr. Manage. 13 (1) (2013) 19–37. , http://dx.doi.org/ 10.1080/15623599.2013.10773203.
  • [46] M.M. Marzouk, A.A. El Kherbawy, M. Khalifa, Factors influencing subcontractors selection in construction project, HBRC J. 9 (2) (2013) 150–158. , http://dx.doi.org/10.1016/j. hbrcj.2013.05.001.
  • [47] H. Abbasianjahromi, H. Rajaie, E. Shakeri, O. Kazemi, A new approach for subcontractor selection in the construction industry based on portfolio theory, J. Civil Eng. Manage. 22 (3) (2016) 346–356. , http://dx.doi.org/10.3846/13923730.2014.897983.
  • [48] J. Yang, H. Wang, W. Wang, S. Ma, Using data envelopment analysis to support best-value contractor selection, J. Civil Eng. Manage. 22 (2) (2016) 199–209. , http://dx.doi.org/10.3846/ 13923730.2014.897984.
  • [49] F. Antoniou, G. Aretoulis, A multi criteria decision making support system for choice of method of compensation for highway construction contractors in Greece, Int. J. Constr. Manage. (2018) 1–18. , http://dx.doi.org/10.1080/ 15623599.2018.1452103.
  • [50] A. Walraven, B. De Vries, From demand driven contractor selection towards value driven contractor selection, Constr. Manage. Econ. 27 (6) (2009) 597–604. , http://dx.doi.org/ 10.1080/01446190902933356.
  • [51] M. Hasnain, M.J. Thaheem, F. Ullah, Best value Contractor selection I road construction projects: ANP-based decision support system, Int. J. Civil Eng. 16 (6) (2018) 695–714.
  • [52] M. Filippi, Remarks on the green retrofitting of historic buildings in Italy, Energy Build. 95 (2015) 15–22. , http://dx. doi.org/10.1016/j.enbuild.2014.11.001.
  • [53] S.N. Harun, Heritage building conservation in Malaysia: experience and challenges, Procedia Eng. 20 (2011) 41–53. , http://dx.doi.org/10.1016/j.proeng.2011.11.137.
  • [54] H. Doloi, K.C. Iyer, A. Sawhney, Structural equation model for assessing impacts of contractor's performance on project success, Int. J. Project Manage. 29 (6) (2011) 687–695. , http:// dx.doi.org/10.1016/j.ijproman.2010.05.007.
  • [55] X. Huang, An analysis of the selection of project contractor in the construction management process, Int. J. Bus. Manage. 6 (3) (2011) 184–189.
  • [56] S. Hendriatiningsih, D. Suwardhi, J. Januragadi, 3D Model on terrestrial laser scanning (TLS) case study: the Cankuang Temple, Garut District, West Java, Indonesia, J. Eng. Technol. Sci. 47 (1) (2015) 1–19.
  • [57] D. Puri, S. Tiwari, Evaluating the criteria for contractors' selection and bid evaluation, Int. J. Eng. Sci. Invent. 3 (7) (2014) 44–48.
  • [58] Viešuju pirkimu tarnyba, Viešuju pirkimu tarnybos prie Lietuvos Respublikos Vyriausybes direktoriaus 2006 m. spalio 12 d. isakymas Nr. 1S-53 ‘‘Del viešuju pirkimu pasiulymo vertinimo ekonomiškai naudingiausio pasiulymo arba mažiausios kainos vertinimo kriteriju rekomenfaciju’’, 2006, 1–27.
  • [59] V. Podvezko, Application of AHP technique, J. Bus. Econ. Manage. 10 (2) (2009) 181–189.
  • [60] M. Keshavarz Ghorabaee, E.K. Zavadskas, Z. Turskis, J. Antucheviciene, A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making, Econ. Comput. Econ. Cybern. Stud. Res. 50 (3) (2016) 25–44.
  • [61] M. Kendall, Rank Correlation Methods, Griffin, London, 1970.
  • [62] T. Saaty, Decision making with the analytic hierarchy process, Int. J. Service Sci. 1 (1) (2008) 83–98. , http://dx.doi. org/10.1504/IJSSci.2008.01759.
  • [63] J.P. Brans, B. Mareschal, PROMETHEE methods, in: J. Figueira, S. Greco, M. Ehrgott (Eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, Springer, 2005 163–195 (Chapter 5).
  • [64] V. Podvezko, A. Podviezko, Dependence of multi-criteria evaluation result on choice of preference functions and their parameters, Technol. Econ. Dev. Econ. 16 (1) (2010) 143–158.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bc97338f-50c3-46a3-94ab-17608181aaf4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.