Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 6 | 212--219
Tytuł artykułu

A review of techniques for security information for agent approaches in networks

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Przegląd technik informacji o bezpieczeństwie dla podejść agentów w sieciach
Języki publikacji
EN
Abstrakty
EN
The development of communication technology has led to an increase in the risks associated with sending crucial information across a communication channel. One of the security details is defending against data theft over expanding networks by concealing sensitive information by employing agent techniques for hidden transmission. As a result, it is often used to solve data security issues. Researchers applied AI and agentbased algorithms to help secure information concealment since it may be challenging to choose the ideal cover image to conceal crucial information. The agent-based strategy and its applicability in various security information modalities are examined in this paper. This paper also discusses several important problems with creating other types of agents, such as basic reflex agents, reflex agents based on models, goal-based agents, utility-based agents, and learning agents. This paper concludes with an overview of the literature on agent-based methods for security information. The overall finding of our research is that agent-based techniques seem to be particularly fit for this area, although this still needs to be confirmed by more widely deployed systems.
PL
Rozwój technologii komunikacyjnych doprowadził do wzrostu zagrożeń związanych z przesyłaniem kluczowych informacji kanałem komunikacyjnym. Jednym ze szczegółów bezpieczeństwa jest ochrona przed kradzieżą danych w rozszerzających się sieciach poprzez ukrywanie poufnych informacji za pomocą technik agentów do ukrytej transmisji. W rezultacie jest często używany do rozwiązywania problemów związanych z bezpieczeństwem danych. Badacze zastosowali sztuczną inteligencję i algorytmy oparte na agentach, aby pomóc zabezpieczyć ukrywanie informacji, ponieważ wybór idealnego obrazu okładki w celu ukrycia kluczowych informacji może być trudny. W tym artykule przeanalizowano strategię opartą na agentach i jej zastosowanie w różnych trybach informacji o bezpieczeństwie. W tym artykule omówiono również kilka ważnych problemów związanych z tworzeniem innych typów agentów, takich jak podstawowe agenty refleksyjne, agenty refleksyjne oparte na modelach, agenty oparte na celach, agenty oparte na użyteczności i agenty uczące się. Artykuł ten kończy się przeglądem literatury dotyczącej agentowych metod uzyskiwania informacji o bezpieczeństwie. Ogólnym wnioskiem z naszych badań jest to, że techniki oparte na agentach wydają się szczególnie pasować do tego obszaru, chociaż musi to jeszcze zostać potwierdzone przez szerzej stosowane systemy.
Wydawca

Rocznik
Strony
212--219
Opis fizyczny
ibliogr. 52 poz., rys.
Twórcy
Bibliografia
  • [1] I. O. P. C. Series and M. Science, “Steganalysis of Intra Prediction Mode and Motion Vector-based Steganography by Noise Residual Convolutional Neural Network Steganalysis of Intra Prediction Mode and Motion Vector- based Steganography by Noise Residual Convolutional Neural Network,” 2020.
  • [2] A. Kuznetsov, A. Onikiychuk, and A. Arischenko, “Adaptive Pseudo-Random Sequence Generation for Spread Spectrum Image Steganography,” pp. 161–165, 2020.
  • [3] D. G. Cory, “Development of a Method for Building a TrustedEnvironment by Using Hidden Software Agent Steganography Development of a Method for Building a Trusted Environment by Using Hidden Software Agent Steganography,” pp. 0–6.
  • [4] R. D. Rashid, “Edge Based Image Steganography : Problems and Solution,” 2019 Int. Conf. Commun. Signal Process. their Appl., pp. 1–5, 2019.
  • [5] S. Rustad, D. R. Ignatius, M. Setiadi, A. Syukur, and P. N.Andono, “Inverted LSB image steganography using adaptive pattern to improve imperceptibility,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2021.
  • [6] Y. P. Astuti, D. R. Ignatius, M. Setiadi, E. H. Rachmawanto, and C. A. Sari, “Simple and Secure Image Steganography using LSB and Triple XOR Operation on MSB,” Int. Conf. Inf. Commun. Technol., pp. 191–195, 2018.
  • [7] E. Antonov, E. Lopatina, K. Ionkina, E. Lopatina, and K. Ionkina, “ScienceDirect ScienceDirect Agent data merging Agent data merging,” Procedia Comput. Sci., vol. 169, no. 2019, pp. 473–478, 2020.
  • [8] H. Abdul, J. Park, and J. Suh, “Use of Software Agent Technology in Management Information System : A Literature Review and Classification,” vol. 29, no. 1, pp. 65–82, 2019.
  • [9] R. Hafezi, “How Artificial Intelligence Can Improve Understanding in Challenging Chaotic Environments,” no. July, 2019.
  • [10] J. Qiao and M. Sun, “Consensus Control via Iterative Learning for Singular Multi-Agent Systems With Switching Topologies,” vol. 9, no. Ilc, 2021.
  • [11] H. O. W. Can, O. N. E. Evaluat, E. A. C. Ional, S. Ware, and A. Framework, “CHAPTER 15 - FUNCTIONAL LINGUISTIC BASED MOTIVATIONS FOR A CONVERSATIONAL.”, 2019.
  • [12] S. Kaur, S. Bansal, and R. K. Bansal, “Image steganographyfor securing secret data using hybrid hiding model,” 2020.
  • [13] I. J. Kadhim, P. Premaratne, P. J. Vial, and B. Halloran, “AC US CR,” Neurocomputing, 2018.
  • [14] C. Savaglio, M. Ganzha, M. Paprzycki, C. Bădică, M. Ivanović, and G. Fortino, “Agent-based Internet of Things : State-of-the art and research challenges,” Futur. Gener. Comput. Syst., vol. 102, pp. 1038–1053, 2020.
  • [15] Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L. and Zdeborová, L., Machine learning and the physical sciences. Reviews of Modern Physics, 91(4), p.045002, 2019.
  • [16] K. Rakić, M. Rosić, and I. Boljat, “A Survey of Agent-Based Modelling and Simulation Tools for Educational Purpose,” vol. 3651, pp. 1014–1020, 2020.
  • [17] N. H. Jaafar, A. Ahmad, N. Hamimah, and A. Hamid, “A Workload Manager : The Pre-assessment in Sincere Software Agent Environment,” 2018 Int. Symp. Agent, Multi-Agent Syst. Robot., pp. 1–5, 2018.
  • [18] O. Boissier et al., “Autonomous Agents on the Web To cite this version : HAL Id : emse-03313806 Autonomous Agents on the Web,” vol. 11. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany, pp. 20–24, 2021.
  • [19] Obuhuma, J.I., Okoyo, H.O. and McOyowo, S.O., September. A Software Agent for Vehicle Driver Modeling. In 2019 IEEE AFRICON (pp. 1-8). IEEE, 2019.
  • [20] E. Guerrero, M. Lu, H. Yueh, and H. Lindgren, “Autonomous adaptation of software agents in the support of human activities,” pp. 1–13.
  • [21] D. Lee, “Comparison of Reinforcement Learning Activation Functions to Improve the Performance of the Racing Game Learning Agent,” vol. 16, no. 5, pp. 1074–1082, 2020.
  • [22] S. Kraus et al., “AI for Explaining Decisions in Multi-Agent Environments,” 2020.
  • [23] W. Lu, L. He, Y. Yeung, Y. Xue, H. Liu, and B. Feng, “Secure Binary Image Steganography based on Fused Distortion Measurement,” IEEE Trans. Circuits Syst. Video Technol., vol. PP, no. c, p. 1, 2018.
  • [24] M. Ghadi, L. Laouamer, L. Nana, and A. Pascu, Robust Image Watermarking Based on Multiple-Criteria Decision-Making A blind spatial domain-based image watermarking using texture analysis and association rules mining, no. December. Multimedia Tools and Applications, 2018.
  • [25] O. Evsutin and A. Kokurina, The adaptive algorithm of information unmistakable embedding into digital images based on the discrete Fourier transformation. Multimedia Tools and Applications, 2018.
  • [26] H. Cherifi and M. El, “Hybrid blind robust image watermarking technique based on DFT-DCT and Arnold transform,” 2018.
  • [27] A. A. A. B. D. El-latif, B. Abd-el-atty, M. S. Hossain, and S. Member, “Efficient Quantum Information Hiding for Remote Medical Image Sharing,” IEEE Access, vol. 6, pp. 21075–21083, 2018.
  • [28] Halboos, E.H.J. and Albakry, A.M., 2022. Hiding text using the least significant bit technique to improve cover image in the steganography system. Bulletin of Electrical Engineering and Informatics, 11(6), pp.3258-3271.
  • [29] P. Puteaux, S. Member, W. Puech, and S. Member, “An Efficient MSB Prediction-Based Method for High-Capacity Reversible Data Hiding in Encrypted Images,” vol. 6013, no. c, pp. 1–13, 2018.
  • [30] Alhyani, N.J., Hamid, O.K. and Ibrahim, A.M., 2021. Efficient terrestrial digital video broadcasting receivers based OFDM techniques. Przegląd Elektrotechniczny, 97.
  • [31] Q. Su et al., “New Rapid and Robust Color Image Watermarking Technique in Spatial Domain,” IEEE Access, vol. 7, pp. 30398–30409, 2019.
  • [32] W. H. R. Zhou, J. Luo, and B. Liu, “LSBs-based quantum color images watermarking algorithm in edge region,” Quantum Inf. Process., vol. 123, 2019.
  • [33] Biswas, R. and Bandyapadhay, S.K., Random selection based GA optimization in 2D-DCT domain color image steganography. Multimedia Tools and Applications, 79(11), pp.7101-7120, 2020.
  • [34] J. Chuang, Y. Hu, C. Chen, Y. Lin, and Y. Chen, “Joint index coding and reversible data hiding methods for color image quantization,” Multimed. Tools Appl., 2019.
  • [35] Di, F., Zhang, M., Huang, F., Liu, J. and Kong, Y., 2019. Reversible data hiding in JPEG images based on zero coefficients and distortion cost function. Multimedia Tools and Applications, 78(24), pp.34541-34561.
  • [36] Liu, Z.L. and Pun, C.M., 2019. Reversible image reconstruction for reversible data hiding in encrypted images. Signal Processing, 161, pp.50-62, 2019.
  • [37] Ren, H., Lu, W. and Chen, B., Reversible data hiding in encrypted binary images by pixel prediction. Signal Processing, 165, pp.268-277.
  • [38] Yao, Y., Zhang, W., Wang, H., Zhou, H. and Yu, N., 2019. Content-adaptive reversible visible watermarking in encrypted images. Signal Processing, 164, pp.386-401. [39] L. Xiong and Z. Xu, “An integer wavelet transform based scheme for reversible data hiding in encrypted images,” Multidimens. Syst. Signal Process., 2019.
  • [40] G. Ma and J. Wang, “Signal Processing : Image Communication Efficient reversible data hiding in encrypted images based on multi-stage integer wavelet transform ✩,” Signal Process. Image Commun., vol. 75, no. March, pp. 55–63, 2019.
  • [41] X. Liu et al., “Scheme for Protecting Authenticity and Integrity of Medical Images,” IEEE Access, vol. 7, pp. 76580–76598, 2019.
  • [42] V. Verma, S. K. Muttoo, and V. B. Singh, “Enhanced payloadand trade-off for image steganography via a novel pixel digits alteration,” 2020.
  • [43] A. Emami, ReDMark: Framework for Residual Diffusion Watermarking based on Deep Networks. Elsevier Ltd, 2020.
  • [44] A. K. Sahu and G. Swain, “Reversible Image Steganography Using Dual ‑ Layer LSB,” Sens. Imaging, 2020.
  • [45] T. Li, H. Li, L. Hu, and H. Li, “A Reversible Steganography Method With Statistical Features Maintained Based on the Difference Value,” pp. 12845–12855, 2020.
  • [46] X. Xie, “A hybrid reversible data hiding for multiple images with high embedding capacity,” IEEE Access, vol. PP, p. 1, 2020.
  • [47] S. Das, A. K. Sunaniya, R. Maity, and N. P. Maity, “Parallel Hardware Implementation of Efficient Embedding Bit Rate Control Based Contrast Mapping Algorithm for Reversible Invisible Watermarking,” IEEE Access, vol. 8, pp. 69072–69095, 2020.
  • [48] D. Huang and J. Wang, “Signal Processing : Image Communication High-capacity reversible data hiding in encrypted image based on specific encryption process ✩,” Signal Process. Image Commun., vol. 80, no. July 2019, p. 115632, 2020.
  • [49] C. Chang, “Separable Reversible Data Hiding in Encrypted Images With High Capacity Based on Median-Edge Detector Prediction,” pp. 29639–29647, 2020.
  • [50] S. Chen, “Fidelity Preserved Data Hiding in Encrypted Images Based on Homomorphism and Matrix Embedding,” vol. 8, pp. 22345–22356, 2020.
  • [51] J. Molina-Garcia, B. P. Garcia-Salgado, V. Ponomaryov, R. Reyes-Reyes, S. Sadovnychiy, and Clara Cruz-Ramos, “Signal Processing : Image Communication An effective fragile watermarking scheme for color image tampering detection and self-recovery ,” Signal Process. Image Commun., vol. 81, no. July 2019, p. 115725, 2020.
  • [52] M. Cedillo-hernandez, A. Cedillo-hernandez, M. Nakanomiyatake, and H. Perez-meana, “Biomedical Signal Processing and Control Improving the management of medical imaging by using robust and secure dual watermarking,” Biomed. Signal Process. Control, vol. 56, p. 101695, 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bc89beb7-65a3-461a-9f66-8bfdc5ba1e58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.