Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of experimental investigations of the basic thermal property – the specific heat capacity of selected heterogeneous materials – graphene oxide rubber composites. The value of specific heat capacity was measured with a PerkinElmer DSC 8000 differential scanning calorimeter using modulated temperature mode of operation. The heterogeneous material under investigation was the graphene oxide/rubber composite, which is used in the production of roller bearing seals. Two types of rubber have been used as the basic matrix of composites: the hydrogenated acrylonitrile butadiene rubber and the fluoroelastomer. Graphene oxide reduced with sodium hypophosphite was applied as a composite filler. The main goals of the work was to expand the database of thermophysical properties of materials and to investigate the influence of material heterogeneity on the results of specific heat capacity measurements obtained with smallsized test samples.
Czasopismo
Rocznik
Tom
Strony
91--98
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Department of Thermodynamics, Rzeeszów University of Technology, Al.Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Department of Thermodynamics, Rzeeszów University of Technology, Al.Powstańców Warszawy 12, 35-959 Rzeszów, Poland, joanwilk@prz.edu.pl
Bibliografia
- [1] Wen, Y., Yin, Q., Jia, H., Yin, B., Zhang X., Liu, P., Wang, J., Ji Q., & Xu, Z. (2017). Tailoring rubber-filler interaction and multifunctional rubber nanocomposites by usage of graphene oxide different oxidation degrees. Composites Part B: Engineering,124, 250−259. doi: 10.1016/j.compositesb.2017.05.006
- [2] Lim, L.P., Juan, J.C., Huang, N.M., Goh, L.K., Leng, F.P., & Loh, Y.Y. (2019). Enhanced tensile strength and thermal conductivity of natural rubber graphene composite properties via rubbergraphene interaction. Materials Science and Engineering B, 246,112−119. doi: 10.1016/j.mseb.2019.06.004
- [3] Zheng, L., Jerrams, S., Xu, Z., Zhang, L., , L., & Wen, S. (2020). Enhanced gas barrier properties of graphene oxide/rubber composites with strong interfaces constructed by graphene oxide and sulfur. Chemical Engineering Journal, 383, 123100. doi:10.1016/j.cej.2019.123100
- [4] Wilk, J., Smusz, R., Filip, R., Chmie,l G., & Bednarczyk, T. (2020). Experimental investigations on graphene oxide/rubber composite thermal conductivity. Scientific Reports, 10, 15533.doi: 10.1038/s41598-020-72633-z
- [5] Parker, W.J., Jenkins, R.J., Butler, C.P., & Abbott, G.L. (1961). Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. Journal of Applied Physics, 32(9),1679−1684. doi: 10.1063/1.1728417
- [6] Bocchini, G.F., Bovesecchi, G., Coppa, P., Corasaniti, S., Montanari, R., & Varone, A. (2016). Thermal Diffusivity of Sintered Steels with Flash Method at Ambient Temperature. International Journal of Thermophysics, 37(4), 1−14. doi: 10.1007/s10765-016-2050-4
- [7] Kruczek, T., Adamczyk, W.P., & Białecki, R.A. (2013). In Situ Measurement of Thermal Diffusivity in Anisotropic Media. International Journal of Thermophysics, 34, 467−485. doi:10.1007/s10765-013-1413-3
- [8] Adamczyk, W., Białecki, R., Orlande, H.R.B., & Ostrowski, Z. (2020). Nondestructive, real time technique for in-plane heat diffusivity measurements. International Journal of Heat and Mass Transfer, 154(3), 119659. doi: 10.1016/j.ijheatmasstransfer. 2020.119659
- [9] Wilk, J., Smusz, R., & Filip, R. (2023). Experimental investigations on thermal diffusivity of heterogeneous materials. Experimental Thermal and Fluid Science, 144(9), 110868. doi: 10.1016/j.expthermflusci.2023.110868
- [10] Al-Douri, Y. (2022). Graphene, Nanotubes and Quantum DotsBased Nanotechnology. Fundamentals and Applications. (1st Edn.). Woodhead Publishing, Elsevier, Kidlington.
- [11] Mahanta, N.K., & Abramson, A.R. (2012). Thermal conductivity of graphene and graphene oxide nanoplatelets. 13th IEEE ITHERM Conference, 30 May - 01 June, San Diego, USA. doi:10.1109/ITHERM.2012.6231405
- [12] Meng ,Q. L., Liu, H., Huang, Z., Kong, S., Jiang, P., & Bao, X. (2018). Tailoring thermal conductivity of bulk graphene oxide by tuning the oxidation degree. Chinese Chemical Letters, 29(5),711−715. doi: 10.1016/J.CCLET.2017.10.028
- [13] McHugh, J., Fideu, P., Herrmann, A., & Stark, W. (2010). Determination and review of specific heat capacity measurements during isothermal cure of an epoxy using TM-DSC and standard DSC techniques. Polymer Testing, 29(6), 759–765. doi: 10.1016/j.polymertesting.2010.04.004
- [14] Bernardes, C.E.S., Joseph, A., & Minas da Piedade, M.E. (2020). Some practical aspects of heat capacity determination by differential scanning calorimetry. Thermochimica Acta, 687, 178574. doi: 10.1016/j.tca.2020.178574
- [15] Jiao, Y., Liu, C.F., Cui, X.P., Zhang, J., Huang, L.J., & Geng, L. (2022). A new approach for measurement of the low-temperature specific heat capacity. Measurement, 203, 111892. doi: 10.1016/j.measurement.2022.111892
- [16] Gill, P.S., Sauerbrunn, S.R., & Reading, M. (2014). Modulated differential scanning calormetry, Journal of Thermal Analysis, 40, 931−939. doi: 10.1007/BF02546852
- [17] Riviere, L., Causse, N., Lonjon, A., Dantras, E., & Lacabanne, C. (2016). Specific heat capacity and thermal conductivity of PEEK/Ag nanoparticles composites determined by ModulatedTemperature Differential Scanning Calorymetry. Polymer Degradation and Stability, 127, 98−104. doi: 10.1016/j.polymdegradstab.2015.11.015.
- [18] Höhne, G.W.H., Hemminger, W.F., & Flammersheim, H.J. (2003). Differential Scanning Calorimetry (2nd Edn.), SpringerVerlag, Berlin Heidelberg.
- [19] Rudtsch, S. (2002). Uncertainty of heat capacity measurements with differential scanning calorimeters. Thermochimica Acta, 382 (1−2), 17–25. doi: 10.1016/S0040-6031(01)00730-4
- [20] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2008). Evaluation of measurement data - Guide to the expression of uncertainty in measurement (1st Edn.) Joint Committee for Guides in Metrology, JCGM 100.
- [21] González, A.G., & Herrador, M.Á. (2007). The assessment of electronic balances for accuracy of mass measurements in the analytical laboratory. Accreditation and Quality Assurance, 12(1),21−29. doi: 10.1007/s00769-006-0214-9
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bc183397-6064-4c72-9f0a-f79355aceb5f