Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 37, nr 5 | 217--222
Tytuł artykułu

Influence of variable casting wall thickness and shell mold material and its thermal properties on secondary dendrite arm spacing in IN 713C superalloy castings

Autorzy
Warianty tytułu
PL
Wpływ grubości ścianki odlewu oraz składu materiału i właściwości cieplnych formy ceramicznej na odległość między ramionami wtórnymi dendrytów w odlewach z nadstopu IN 713C
Języki publikacji
EN
Abstrakty
EN
The results of microstructure investigations of IN 713C superalloys obtained as thin walled‚ wedge’ castings from three kinds of shell molds are presented. Light microscopy, scanning electron microscopy observations and secondary dendrite arm spacing (SDAS) measurements were used to determine the differences in the IN 713C castings obtained using three kinds of shell mold materials. The effects of major constituents of the three shell molds: zirconium silicate ZrSiO4, aluminosilicate mAl2O3 . nSiO2 and SiC-based system on the SDAS in the investigated castings of the IN 713C superalloy are described. The results confirm that crystallization conditions (the variable wall thickness of the casting and material of the shell) of the IN 713C castings influence their microstructure. The increased SiC content in the shell molds has an effect on the crystallization process kinetics as indicated by the changes in the observed secondary dendrite arm spacing.
PL
Powszechnie wiadomo, że parametry procesu odlewania mogą wpływać na mikrostrukturę i właściwości mechaniczne nadstopów na osnowie niklu. Zmniejszenie odległości między ramionami wtórnymi dendrytów (SDAS) prowadzi do zredukowania porowatości i obszarów eutektyki w odlewie. Celem przeprowadzonych badań było ustalenie wpływu grubości ścianki odlewu oraz składu materiału i właściwości cieplnych formy ceramicznej na odległości między ramionami wtórnymi dendrytów w odlewach z nadstopu IN 713C.
Wydawca

Rocznik
Strony
217--222
Opis fizyczny
Bibliogr. 32 poz., fig., tab.
Twórcy
autor
Bibliografia
  • [1] Kostić S., Golubović A., Valčić A.: Primary and secondary dendrite spacing of Ni-based superalloy single crystals. J. Serb. Chem. Soc. 74 (2009) 61÷69.
  • [2] Epishin A., Link T., Brűckner U., Fedelich B., Portella P.: Effects of segregation in nickel-base superalloys: dendritic stresses. [in:] Green K. A., Pollock T. M., Harada H., Howson T. E., Reed R. C., Schirra J. J., Walston S. (Eds.), Superalloys 2004, Seven Springs Mountain Resort in Champion, Pennsylvania, TMS (2004) 537.
  • [3] Sifeng G., Lin L., Yiku X., Chubin Y., Jun Z., Hengzhi F.: Influences of processing parameters on microstructure during investment casting of nickel-base single crystal superalloy DD3. China Foundry 9 (2012) 159÷164.
  • [4] Guo H., Jianguo L., Xiemin M., Hengzhi F.: Model for coarsening of SDAS and its verification in multicomponent SC superalloys. T. Nonferr. Metal. Soc. 4/2 (1994) 67÷69.
  • [5] Zhang J., Li J., Jin T., Sun X., Hu Z.: Effect of solidification parameters on the microstructure and creep property of a single crystal Ni-base superalloy. J. Mater. Sci. Technol. 26/10 (2010) 889÷894.
  • [6] Rahimian M., Milenkowic S., Sabirov I.: A physical simulation study of the effect of thermal variations on the secondary dendrite arm spacing in a Ni-based superalloy. Philos. Mag. Lett. 94/2 (2014) 86÷94.
  • [7] Ma D. X.: Modeling of primary spacing selection in dendrite arrays during directional solidification. Metall. Mater. Trans. B 33 (2002) 223÷233.
  • [8] Kurz W., Fisher J. D.: dendrite growth at the limit of stability — tip radius and spacing. Acta Metall. 29 (1981) 11÷20.
  • [9] Hunt J. D.: Cellular and primary dendrite spacing. [in:] Proc. International Conference on Solidification and Casting of Metal, The Metals Society, London (1979) 3.
  • [10] Ma D. X., Sahm P. R.: Primary spacing in directional solidification. Metall. Mater. Trans. A 29 (1998) 1113÷1119.
  • [11] Tewari S. N., Sriramamurthy A. M.: Dendrite spacing in a directionally solidified superalloy. Metall. Trans. A 12/1 (1981) 137÷138.
  • [12] Trivedi R.: Interdendritic spacing. Part II. A comparison of theory and experiment. Metall. Mater. Trans. A 15 (1984) 977÷982.
  • [13] Kraft T., Rettenmayr M., Exner H. E.: Modeling of dendritic solidification for optimizing casting and microstructure parameters. Prog. Mater. Sci. 42 (1997) 277÷286.
  • [14] Yang X. L., Dong H. B., Wang W., Lee P. D.: Microscale simulation of stray grain formation in investment cast turbine blades. Mater. Sci. Eng. A 386 (2004) 129÷139.
  • [15] Brückner U., Epishin A., Link T.: Local X-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys. Acta Mater. 45/12 (1997) 5223÷5231.
  • [16] Ode M., Kim S. G., Kim W. T., Suzuki T.: Numerical prediction of the secondary dendrite arm spacing using a phase-field model. ISIJ International 41/4 (2001) 345÷349.
  • [17] Flemings M. C.: Solidification processing. Metall. Trans. 5 (1974) 2121÷2134.
  • [18] Kurz W., Fisher D. J.: Fundamentals of solidification. 4th ed., Trans. Tech. Publications, Switzerland (1998).
  • [19] Zupanič F., Bončina T., Križman A.: Microstructural evolution on continuous casting of nickel based superalloy Inconel 713C. Mater. Sci. Technol. 18/7 (2002) 811÷819.
  • [20] De Farias Azevedo C. R., Moreira M. F., Hippert E.: Nickel superalloy (Inconel 713C). Instituto de Pesquisas Tecnológicas, São Paulo (2001).
  • [21] Radavich J. F.: Effects of Zr variations on the microstructural stability of alloy 713C. [in:] Donachie M. J. (Ed.), Superalloys 1968, TMS (1968) 199.
  • [22] Ges A., Palacio H., Versaci R.: IN-713C Characteristic properties optimized through different heat treatments. J. Mater. Sci. 29 (1994) 3572÷3576.
  • [23] Alloy Digest, Nickel Collection 1952÷2010. [in:] http://asmcommunity. asminternational.org/.
  • [24] Jonšta P., Jonšta Z., Sojka J., Čižek L., Hernas A.: Structural characteristics of nickel superalloy Inconel 713LC after heat treatment. J. Achiev. Mater. Manuf. Eng. 21/2 (2007) 29÷32.
  • [25] SUM-MET The Science Behind Materials Preparation, Buehler, USA (2004).
  • [26] Szczotok A., Chmiela B., Sozańska M.: Grain imaging and measurement on cross-section of turbine blade using EBSD and light microscopy methods. Inżynieria Materiałowa 3/175 (2010) 695÷698.
  • [27] Moskal G., Cwajna J., Witala B., Cygan R.: Influence of measurement results of thermal conductivity and heat transfer coefficients on the simulation results of casting process of aircraft engine elements. Defect Diffus. Forum 312-315 (2011) 566÷570.
  • [28] Pavlović-Krstić J., Bähr R., Krstić G., Putić S.: The effect of mould temperature and cooling conditions on the size of secondary dendrite arm spacing in Al–7Si–3Cu alloy. MJoM 15/2 (2009) 105÷113.
  • [29] Roučka J., Kováč M., Odložil J., Hrbáček K.: Solidification of superalloys in shell moulds and its numerical simulation. Arch. Foundry Eng. 10 (2010) 137÷146.
  • [30] Dai H.: A study of solidification structure evolution during investment casting of Ni-based superalloy for aero-engine turbine blades, PhD Thesis, University of Leicester (2008).
  • [31] Gong W., Chen L., Liu R., Hao J.: Derivation and application of time step model in solidification process simulation. China Foundry 4/3 (2007) 206÷209.
  • [32] Glicksman M. E.: Principles of solidification: an introduction to modern casting and crystal growth concepts, Springer (2011).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na
działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bbdf5770-8c73-4d20-a8fb-b7d06392109c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.