Warianty tytułu
Języki publikacji
Abstrakty
Discontinuous deformations, such as sinkholes, pose significant challenges in post-mining areas due to their unpredictable nature and potential hazard to surface development and the safety of local communities. Therefore, monitoring the post-mining regions should be treated as a continuing task. This study addresses the ongoing problem of sinkhole formation in the former “Przyjaźń Narodów – Szyb Babina” (Babina) lignite mine located in the glaciotectonic region of Muskau Arch in western Poland. The research uses airborne and terrestrial laser scanning methods to identify and monitor discontinuous deformations, focusing on a newly discovered sinkhole. The methodology involves differential analysis of Digital Elevation Models (DEMs) and their derivatives obtained from airborne laser scanning (ALS) and periodic terrestrial laser scanning (TLS) measurements. The results of ALS DEM analysis allowed the successful identification of 75 confirmed sinkholes, the largest measuring 12.8 m in diameter and 4.8 m deep. Whereas, differential DEM analysis indicated new sinkholes that developed between 2011 and 2020 in the area of shallow underground mining. Two-year TLS monitoring of the new sinkhole showed no progression in its dimensions. However, localised erosion processes associated with water transport were detected. The study shows that sinkhole formation processes are active 5 decades after the end of mining and highlights the importance of continuous monitoring of post-mining areas with advanced laser scanning methodss.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
431--446
Opis fizyczny
Bibliogr. 56 poz., fot., rys., tab., wykr.
Twórcy
autor
- Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-421, Wroclaw, Poland
autor
- Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-421, Wroclaw, Poland, jaroslaw.wajs@pwr.edu.pl
autor
- Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-421, Wroclaw, Poland
autor
- KGHM CUPRUM Sp . z.o.o. – Research and Development Centre
Bibliografia
- [1] W . Piwowarski, Modelling of discontinuous deformations over shallow post-mining voids in the rock mass. Acta Geodynamica et Geomaterialia, 253-256 (2019). DOI: https://doi.org/10.13168/AGG.2019.0021.
- [2] J.N. Van Der Merwe, The development of a time-based probabilistic sinkhole prediction method for coal miningin the Witbank and Highveld coalfields. J. S. Afr. Inst. Min. Metall. 120, 6, 393-398 (2020).
- [3] P. Strzałkowski, The influence of selected mining and natural factors on the sinkhole creation hazard based on thecase study. Environmental Earth Sciences 80, 117 (2021). DOI: https://doi.org/10.1007/s12665-021-09403-1.
- [4] R . Ścigała, K. Szafulera, M. Jendryś, Assessment of sinkhole hazard in the post-mining area using the ER T methodand numerical modeling. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 75 (147), 20-34 (2023).
- [5] H. Kratzsch, Mining Subsidence Engineering. Springer-Verlag Berlin Heidelberg New York (1983).
- [6] K . Tajduś, A. Sroka, R. Misa, M. Dudek, Przykłady zagrożeń powierzchni terenu deformacjami nieciągłymi typu powierzchniowego ujawniające się nad zlikwidowanymi podziemnymi wyrobiskami górniczymi. Prace Instytutu Mechaniki Górotworu PAN 19,3, 3-10 (2017).
- [7] O. Kaszowska, A. Kowalski, Wpływ podziemnej eksploatacji górniczej na powierzchnię terenu. Przegląd Geologiczny55, 8, 640-641 (2007).
- [8] J.K. Pringle, et al., Geophysical characterization of derelict coalmine workings and mineshaft detection: a casestudy from Shrewsbury, United Kingdom. Near Surface Geophysics 6, 185-194 (2008).DOI: https://doi.org/10.3997/1873-0604.2008014.
- [9] Z . Pilecki, E. Popiołek, Geodezyjne i geofizyczne rozpoznanie zagrożenia zapadliskowego. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie 6(190), 34-39 (2010).
- [10] Z. Pilecki, et al., Identification of buried historical mineshaft using ground-penetrating radar. Engineering Geology294, 106400 (2021). DOI: https://doi.org/10.1016/j.enggeo.2021.106400.
- [11] J. Maciaszek, System informacji o archiwalnych mapach i polach górniczych na potrzeby zagospodarowania przestrzennego. Wydawnictwa AG H, Kraków (2010).
- [12] J. Blachowski, W. Milczarek, P. Stefaniak, Deformation information system for facilitating studies of mining-grounddeformations, development, and applications. NHESS 14,7, 1677-1689 (2014).DOI: https://doi.org/10.5194/nhess-14-1677-2014.
- [13] A . Gontaszewska, Podziemna eksploatacja węgla brunatnego na Ziemi Lubuskiej – dawne górnictwo, współczesny problem. Przegląd Górniczy 71, 10, 1-8 (2015).
- [14] I . Contrucci et al., Aseismic Mining Subsidence in an Abandoned Mine: Influence Factors and Consequences forPost-Mining Risk Management. Pure Appl. Geophys. 176, 801-825 (2019).DOI: https://doi.org/10.1007/s00024-018-2015-6.
- [15] H.J. Oh, S. Lee, Assessment of ground subsidence using GIS and the weights-of-evidence model. Engineering Geology 115, 36-48 (2010). DOI: https://doi.org/10.1016/j.enggeo.2010.06.015.
- [16] S. Lee, Y. Park, Application of decision tree model for the ground subsidence hazard mapping near abandonedunder ground coal mines. Journal of Environmental Management 127, 166-176 (2013).DOI: https://doi.org/10.1016/j.jenvman.2013.04.010.
- [17] A . Sroka, K. Tajduś, R. Misa, M. Clostermann, The possibility of discontinuity/sinkholes appearance with the determinationof their geometry in the case of shallow drifts. Mat. 18. ALTBERG BAU – KO LLOQUIUM Wieliczka(2018).
- [18] P. Strzałkowski, Sinkhole formation hazard assessment. Environmental Earth Sciences 78, 9, 1-6 (2019).DOI: https://doi.org/10.1007/s12665-018-8002-5.
- [19] Górnośląski System Informacji o Zagrożeniach Powierzchni na Terenach Zlikwidowanych Kopalń. https://zapadliska.gig.eu/, accessed: 10-07-2023.
- [20] F . Gutiérrez et al., Review on sinkhole monitoring and performance of remediation measures by high precisionleveling and terrestrial laser scanner in the salt karst of the Ebro Valley, Spain. Engineering Geology 248, 283-308(2019). DOI: https://doi.org/10.1016/j.enggeo.2018.12.004.
- [21] J. Sevil, A. Benito-Calvo, F. Gutiérrez, Sinkhole subsidence monitoring combining terrestrial laser scanner andhigh-precision levelling. Earth Surface Processes and Landforms 46, 8, 1431-1444 (2021).DOI: https://doi.org/10.1002/esp.5112.
- [22] J. Suh, Y. Choi, Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry. Environmental Earth Sciences 76 (2017). DOI: https://doi.org/10.1007/s12665-017-6458-3.
- [23] G . Jóźków, A. Walicka, A. Borkowski, Monitoring Terrain Deformations Caused by Underground Mining UsingUAV Data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 43,737-744 (2021). DOI: https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-737-2021.
- [24] E . Intrieri, Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application. Geomorphology241, 304-314 (2015). DOI: https://doi.org/10.1016/j.geomorph.2015.04.018.
- [25] O . Orhan, M. Yakar, S. Ekercin, An application on sinkhole susceptibility mapping by integrating remote sensingand geographic information systems. Arabian Journal of Geosciences 13 (17), 1-17 (2020).DOI: https://doi.org/10.1007/s12517-020-05841-6.
- [26] A . Malinowska, et al., Sinkhole occurrence monitoring over shallow abandoned coal mines with satellite-basedpersistent scatterer interferometry. Engineering Geology 262, 105336 (2019).DOI: https://doi.org/10.1016/j.enggeo.2019.105336.
- [27] Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Raport drugi z prac analitycznych o deformacjach terenu w Trzebini, (praca zbiorowa), (2023).
- [28] J. Koźma, M. Kupetz, The transboundary Geopark Muskau Arch (Geopark Łuk Mużakowa, Geopark Muskauer Faltenbogen). Przegląd Geologiczny 56, 8/1, 692-698 (2008).
- [29] J. Badura et al., Geopark “Łuk Mużakowa” – proponowany transgraniczny obszar ochrony georóżnorodności, Przegląd Geologiczny 51, 54-58 (2003).
- [30] A . Gontaszewska, Szkody górnicze, W: A. Greinert (red.) Wydobycie węgla brunatnego i rekultywacja terenów pokopalnianych w regionie lubuskim. Uniwersytet Zielonogórski, Zielona Góra, 146-157 (2015).
- [31] J. Koźma, Antropogeniczne zmiany krajobrazu związane z dawnym górnictwem węgla brunatnego na przykładzie polskiej części obszaru łuku Mużakowa. Górnictwo Odkrywkowe 57, 3, 5-13 (2016).
- [32] T. Chrzan, Wpływ wydobycia węgla brunatnego na środowisko naturalne w Łuku Mużakowskim. Zeszyty Naukowe Politechniki Śląskiej 243, 1436, 29-34 (1999).
- [33] H. Greinert, M. Drab, A. Greinert, Studia nad efektywnością leśnej rekultywacji zwałowisk fitotoksycznie kwaśnych piasków mioceńskich po byłej kopalni węgla brunatnego w Łęknicy. Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra (2009).
- [34] K . Świerkosz, J. Koźma, K. Reczyńska, M. Halama, Muskau Arch Geopark in Poland (Central Europe) – Is it Possible to Integrate Geoconservation and Geoeducation into Biodiversity Conservation? Geoheritage, (2016),DOI: https://doi.org/10.1007/s12371-016-0178-z.
- [35] K . Labus, S. Skoczyńska, Origin of sulphates in post-mining lakes in the eastern part of the Muskau Arch (Polish–German borderland). Geological Quarterly 57 (3), 561-566 (2013).DOI: http://dx.doi.org/10.7306/gq.1110.
- [36] M. Gąsiorowski, J. Stienss, E. Sienkiewicz, I. Sekudewicz, Geochemical Variability of Surface Sediment in Post-Mining Lakes Located in the Muskau Arch (Poland) and Its Relation to Water Chemistry. Water Air Soil Pollut,232, 108 (2021). DOI: https://doi.org/10.1007/s11270-021-05057-8.
- [37] M. Oszkinis-Golon, M. Frankowski, A. Pukacz, Macrophyte Diversity as a Response to Extreme Conditions inthe Post-Mining Lakes of the Muskau Arch (West Poland). Water 13, 2909 (2021).DOI: https://doi.org/10.3390/w13202909.
- [38] A . Gontaszewska, A. Kraiński, Deformacje powierzchni terenu na obszarze dawnego podziemnego górnictwa węgla brunatnego w okolicy Zielonej Góry. W: Wybrane problemy badań geologicznych i hydrogeologicznychdla górnictwa i energetyki. Wyd. GIG , Katowice, 108-119, (2012).
- [39] U. Münch, P. Nestler, Airborne Laserscanning als Ergänzung der Erkundungsmethoden von Braunkohlen-Altbergbau– Airborne Laserscanning, an additional technique for evaluation of hazards caused by underground lignite mining,Brandenburgische Geowissenschaftliche Beiträge 10, 1/2, 7-18 (2003).
- [40] D. Lague, N. Brodu, J. Leroux, Accurate 3D comparison of complex topography with terrestrial laser scanner:Application to the Rangitikei canyon (NZ). IS PRS Journal of Photogrammetry and Remote Sensing 82, 10-26(2013). DOI: https://doi.org/10.1016/j.isprsjprs.2013.04.009.
- [41] R . D. Williams, DEMs of Difference. Geomorphological Techniques, Chap. 2, Sec. 3.2 (2012).
- [42] A . Yalcin, F. Bulut, Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a casestudy from Ardesen (NE-Turkey). Natural Hazards 41, 1, 201-226 (2007).DOI: https://doi.org/10.1007/s11069-006-9030-0.
- [43] M. Eeckhaut et al., Use of LIDAR ‐derived images for mapping old landslides under forest. Earth Surface Processesand Landforms 32, 5, 754-769 (2007). DOI: https://doi.org/10.1002/esp.1417.
- [44] D. Girardeau-Montaut, M. Roux, R. Marc, G. Thibault, Change detection on points cloud data acquired witha ground laser scanner. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36, 3, 30-35, (2005).
- [45] O . Monserrat, M. Crosetto, Deformation measurement using terrestrial laser scanning data and least squares 3Dsurface matching. ISPRS Journal of Photogrammetry and Remote Sensing 63, 1, 142-154 (2008).DOI: https://doi.org/10.1016/j.isprsjprs.2007.07.008.
- [46] M. Kazhdan, M. Bolitho, H. Hoppe, Poisson Surface Reconstruction. In: Proc. of the 4th Eurographics Symposiumon Geometry Processing, 61-70 (2006). DOI: https://doi.org/10.2312/SGP/SGP06/061-070.
- [47] Z . Dong, et al., Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. IS PRSJournal of Photogrammetry and Remote Sensing 163, 327-342 (2020).DOI: https://doi.org/10.1016/j.isprsjprs.2020.03.013.
- [48] R iegl Data Measurement System, Riegl VZ -400i. http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEG L_VZ -400i_Datasheet_2022-09-27.pdf, accessed: 10-07-2023.
- [49] P. Wilkes, A. Lau, M. Disney, K. Calders, A. Burt, J.G. de Tanago, H. Bartholomeus, B. Brede, M. Herold, Dataacquisition considerations for terrestrial laser scanning of forest plots. Remote Sensing of Environment 196,140-153 (2017). DOI: https://doi.org/10.1016/j.rse.2017.04.030.
- [50] P. Axelsson, Processing of laser scanner data – algorithms and applications. IS PRS Journal of Photogrammetryand Remote Sensing 54, 2-3, 138-147 (1999). DOI: https://doi.org/10.1016/S0924-2716(99)00008-8.
- [51] S . Lane, N. Richard, M. Westaway, D. Murray Hicks, Estimation of erosion and deposition volumes in a large,gravel‐bed, braided river using synoptic remote sensing. Earth surface processes and landforms: the journal of theBritish Geomorphological Research Group 28.3, p. 249-271 (2003). DOI: https://doi.org/10.1002/esp.483.
- [52] J. Koźma, Geoturystyczne walory krajobrazu Łuku Mużakowa. Górnictwo Odkrywkowe 3, 32-40 (2017).
- [53] P. Cignoni, C. Rocchini, R. Scopigno, Metro: measuring error on simplified surfaces. Computer graphics forum.Vol. 17. No. 2. Oxford, UK and Boston, USA : Blackwell Publishers (1998).DOI: https://doi.org/10.1111/1467-8659.00236.
- [54] A . Malinowska, A. Matonóg, Sinkhole hazard maping with the use of spatial analysis and analytical hierarchyprocess in the light of mining-geological factors. Acta Geodyn. Geomater. 14, 2 (186), 159-172 (2017).DOI: https://doi.org/10.13168/AGG.2016.0037.
- [55] J. Blachowski, E. Warchala, J. Koźma, A. Buczyńska, N. Bugajska, M. Becker, D. Janicki, P. Kujawa, L. Kwaśny,J. Wajs, et al., Geophysical Research of Secondary Deformations in the Post Mining Area of the Glaciotectonic Muskau Arch Geopark – Preliminary Results. Applied Sciences. 12 (3), 1194 (2022).DOI: https://doi.org/10.3390/app12031194.
- [56] J. Kretschmann, N. Nguyen, Research Areas in Post-Mining – Experiences from German Hard Coal Mining. J. Pol.Miner. Eng. Soc. 1, 255-262 (2020). DOI: https://doi.org/10.29227/IM-2020-02-31.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bbd433c3-31cc-41b4-9f31-871cf9b7113a