Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 124, nr 3 | 339--364
Tytuł artykułu

Toroidal Algorithms for Mesh Geometries of Root Orbits of the Dynkin Diagram D4

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By applying symbolic and numerical computation and the spectral Coxeter analysis technique of matrix morsifications introduced in our previous paper [Fund. Inform. 124(2013)], we present a complete algorithmic classification of the rational morsifications and their mesh geometries of root orbits for the Dynkin diagram 4 The structure of the isotropy group Gl(4, {Z})D4 of D 4 is also studied. As a byproduct of our technique we show that, given a connected loop-free positive edge-bipartite graph Δ, with n ≥ 4 vertices (in the sense of our paper [SIAM J. Discrete Math. 27(2013)]) and the positive definite Gram unit formqΔ ; Zn→Z, any positive integer d ≥ 1 can be presented as d = qΔ(v), with v Є Zn In case n = 3, a positive integer d ≥ 1 can be presented as d = qΔ(v), with v Є Zn , if and only if d is not of the form 4a(16 · b + 14), where a and b are non-negative integers.
Wydawca

Rocznik
Strony
339--364
Opis fizyczny
Bibliogr. 44 poz., wykr.
Twórcy
autor
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland, simson@mat.umk.torun.pl
Bibliografia
  • [1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Volume 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York, 2006.
  • [2] M. Barot, A characterization of positive unit forms, II, Bol. Soc. Mat. Mexicana (3) 7(2001), 13-22.
  • [3] M. Barot and J.A. de la Pena, The Dynkin type of a non-negative unit form, Expo. Math. 17(1999), 339-348.
  • [4] R. Bautista and D. Simson, Torsionless modules over 1-Gorenstein ^-hereditary artinian rings, Comm. Algebra 12 (1984), 899-936.
  • [5] R.A. Brualdi and D. M. Cvetkovic, A Combinatorial Approach to Matrix Theory and its Application, CRS Press (Boca Raton), 2008.
  • [6] D. M. Cvetkovic, P. Rowlinson and S. Simic, An Introduction to the Theory of Graph Spectra, London Math. Soc. Student Texts 75, Cambridge Univ. Press, Cambridge-New York, 2010.
  • [7] L.E. Dickson, Integers represented by positive ternary quadratic forms, Bull. Amer. Math. Soc. 33(1927), 63-70.
  • [8] L. E. Dickson, Modern Elementary Theory of Numbers, Chicago, 1939.
  • [9] P. Dowbor and D. Simson, Quasi-Artin species and rings of finite representation type, J. Algebra 63 (1980), 435-443.
  • [10] J. A. Drozd, Coxeter transformations and representations of partially ordered sets, Funkc. Anal. i Prilozen. 8(1974), 34-42 (in Russian).
  • [11] M. Felisiak, Computer algebra technique for Coxeter spectral study of edge-bipartite graphs and matrix modifications of Dynkin type An, Fund. Inform. 2013, to appear.
  • [12] M. Felisiak and D. Simson, Experiences in computing mesh root systems for Dynkin diagrams using Maple and C++, Proc. 13th Intern. Symposium on Symbolic and Numeric Algorithms, SYNASC11, Timisoara, 2011, IEEE Post-Conference Proceedings, IEEE CPS Computer Society, IEEE CPS, Tokyo, 2011, pp. 83-86.
  • [13] M. Felisiak and D. Simson, On computing mesh root systems and the isotropy group for simply-laced Dynkin diagrams, Proc. 14th Intern. Symposium on Symbolic and Numeric Algorithms, SYNASC12, Timisoara, 2012, IEEE Post-Conference Proceedings, IEEE CPS Computer Society, IEEE CPS, Tokyo, 2012, pp. 91-97.
  • [14] M. Felisiak and D. Simson, On combinatorial algorithms computing mesh root systems and matrix modifications for the Dynkin diagram An, Discrete Math. 313(2013), 1358-1367, doi: 10.1016.disc.2013.02.003.
  • [15] M. Gasiorek and D. Simson, One-peak posets with positive Tits quadratic form, their mesh translation quivers of roots, and programming in Maple and Python, Linear Algebra Appl. 436(2012), 2240-2272, doi: 10.1016/j.laa. 2011.10.045.
  • [16] M. Gasiorek and D. Simson, A computation of positive one-peak posets that are Tits-sincere, Colloq. Math. 127(2012), 83-103, DOI: 10.4064//cm127-1-6.
  • [17] L. C. Grove and C.T. Benson, Finite Reflection Groups, Graduate Texts in Mathematics 99, Springer-Verlag, 1985.
  • [18] M. Grzecza, S. Kasjan and A. Mroz, Tree matrices and a matrix reduction algorithm of Belitskii, Fund. Inform. 117(2012), 253-279, doi: 10.3233/FI-2012-713.
  • [19] R. A. Horn and V. V. Sergeichuk, Congruences of a square matrix and its transpose, Linear Algebra Appl. 389(2004), 347-353.
  • [20] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge Univ. Press, 1990.
  • [21] K. KawarabayashiandB.Mohar, Star coloring and acyclic coloring of locally planar graphs, SIAMJ. Discrete Math. 24( 2010), 56-71.
  • [22] A. Kisielewicz and M. Szykuła, Rainbow induced subgraphs in proper vertex colorings, Fund. Inform. 111(2011), 437-451, doi: 10.3233/FI-2011-572.
  • [23] J. Kosakowska, Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms, Fund. Inform. 119(2012), 149-162, doi: 10.3233/FI-2012-731.
  • [24] J. Kosakowska and D. Simson, Hereditary coalgebras and representations of species, J. Algebra 293(2005), 457-505.
  • [25] P. Lakatos, Additive functions on trees, Colloq. Math. 89(2001), 135-145.
  • [26] G. Marczak, A. Polak and D. Simson, P-critical integral quadratic forms and positive unit forms. An algorithmic approach, Linear Algebra Appl. 433(2010), 1873-1888; doi: 10.1016/j.laa. 2010.06.052.
  • [27] A. Mroz, On the computational complexity of Bongartz's algorithm, Fund. Inform. 123(2013), 317-329.
  • [28] A. Polak and D. Simson, One-peak posets with almost P-critical Tits form and a spectral Coxeter classification using computer algebra tools, European J. Combin. 2013, to appear.
  • [29] M. Sato, Periodic Coxeter matrices and their associated quadratic forms, Linear Algebra Appl. 406(2005), 99-108; doi: 10.1016/j.laa. 2005.03.036.
  • [30] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Applications, Vol. 4, Gordon & Breach Science Publishers, 1992.
  • [31] D. Simson, A reduction functor, tameness and Tits form for a class of orders, J. Algebra 174(1995), 430-452.
  • [32] D. Simson, Representation types of the category of subprojective representations of a finite poset over K [t]/ (tm) and a solution of a Birkhoff type problem, J. Algebra 311(2007), 1-30.
  • [33] D. Simson, Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories, Colloq. Math. 115(2009), 259-295.
  • [34] D. Simson, Integral bilinear forms, Coxeter transformations and Coxeter polynomials of finite posets, Linear Algebra Appl. 433(2010), 699-717; doi: 10.1016/j.laa. 2010.03.04.
  • [35] D. Simson, Mesh geometries of root orbits of integral quadratic forms, J. Pure Appl. Algebra, 215(2011), 13-34, doi: 10.1016/j.jpaa. 2010.02.029.
  • [36] D. Simson, Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots, Fund. Inform. 109(2011), 425-462, doi: 10.3233//FI-2011-603.
  • [37] D. Simson, Algorithms determining matrix modifications, Weyl orbits, Coxeter polynomials and mesh geometries of roots for Dynkin diagrams, Fund. Inform. 123(2013), 447-490, doi: 10.3233/FI-2013-820.
  • [38] D. Simson, A framework for Coxeter spectral analysis of edge-bipartite graph, their rational morsifications and mesh geometries of root orbits, Fund. Inform. 124(2013), 59-88, doi: 10.3233I-2013-835.
  • [39] D. Simson, A Coxeter-Gram classification of positive simply-laced edge-bipartite graphs, SIAM J. Discrete Math. 27( 2013), in press.
  • [40] D. Simson and A. Skowromki, Elements of the Representation Theory of Associative Algebras, Volume 2. Tubes and Concealed Algebras of Euclidean Type, London Math. Soc. Student Texts 71, Cambridge Univ. Press, Cambridge-New York, 2007.
  • [41] D. Simson and M. Wojewodzki, An algorithmic solution of a Birkhoff type problem, Fund. Inform. 83(2008), 389-410.
  • [42] D. Simson and K. Zajac, An inflation algorithm and a toroidal mesh algorithm for edge-bipartite graphs, Electronic Notes in Discrete Mathematics, 2013, 6 pp. in press
  • [43] D. Simson and K. Zajac, A framework for Coxeter spectral classification of finite posets and their mesh geometries of roots, Intern. J. Math. Mathematical Sciences, Volume 2013, Article ID 743734, 21 pages, http.//dx.doi.org//10.1155//2013//743734.
  • [44] Y. Zhang, Eigenvalues of Coxeter transformations and the structure of the regular components of the Auslander-Reiten quiver, Comm. Algebra 17(1989), 2347-2362.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bbc695f3-dee5-4734-b6e6-e729cced07b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.