Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 70, No. 3 | 537--544
Tytuł artykułu

Optimized Supervised ML for Medicinal Plant Detection : An FPGA Implementation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Medicinal plants have a huge significance today as it is the root resource to treat several ailments and medical disorders that do not find a satisfactory cure using allopathy. The manual and physical identification of such plants requires experience and expertise and it can be a gradual and cumbersome task, in addition to resulting in inaccurate decisions. In an attempt to automate this decision making, a data set of leaves of 10 medicinal plant species were prepared and the Gray-level Co-occurence Matrix (GLCM) features were extracted. From our earlier implementations of the several machine learning algorithms, the k-nearest neighbor (KNN) algorithm was identified as best suited for classification using MATLAB 2019a and has been adopted here. Based on the confusion matrices for various k values, the optimum k was selected and the hardware implementation was implemented for the classifier on FPGA in this work. An accuracy of 88.3% was obtained for the classifier from the confusion chart. A custom intellectual property (IP) for the design is created and its verification is done on the ZedBoard for three classes of plants.
Wydawca

Rocznik
Strony
537--544
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
  • Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India, gayathrin@am.amrita.edu
  • Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India, geethurs@am.amrita.edu
Bibliografia
  • [1] Sandeep Kumar, V. T. E., Leaf feature based approach for automated identification of medicinal plants, 2014 International Conference on Communication and Signal Processing, Melmaruvathur, India, 2014, pp. 210-214, https://doi.org/10.1109/ICCSP.2014.6949830.
  • [2] Sathwik, T., Yasaswini, R., Venkatesh, R., Gopal, A., Classification of selected medicinal plant leaves using texture analysis, 2013 Fourth International Conference on Computing, Communications and Net-working Technologies (ICCCNT), Tiruchengode, India, 2013, pp. 1-6, https://doi.org/10.1109/ICCCNT.2013.6726793
  • [3] Păvăloiu, I.B., Ancuceanu, R., Enache, C.M., Vasilăţeanu, A., Important shape features for Romanian medicinal herb identification based on leaf image, 2017 E-Health and Bioengineering Conference (EHB), Sinaia, Romania, 2017, pp. 599-602, https://doi.org/10.1109/EHB.2017.7995495.
  • [4] Yeni Herdiyeni, I. K., Fusion of local binary patterns feature for tropical medicinal plants identification, 2013 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Sanur Bali, Indonesia, 2013, pp. 353-357, https://doi.org/10.1109/ICACSIS.2013.6761601
  • [5] Li, Z., Jin, J., Zhou, X., Feng, Z., K-nearest neighbor algorithm implementation on FPGA using high level synthesis, 2016, 600-602. https://doi.org/10.1109/ICSICT.2016.7998989.
  • [6] Atitallah, M. B., Kachouri, R., Kammoun, M. Mnif, H., An efficient implementation of GLCM algorithm in FPGA, 2018 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC) (pp. 147-152). IEEE, 2018.
  • [7] Tian, M., Wang, X., Zhang, X., Yang, Z., Huang J., Chen, H., The implementation of a KNN classifier on FPGA with a parallel and pipelined architecture based on Predetermined Range Search, 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, China, 2016, pp. 1491-1493, https://doi.org/10.1109/ICSICT.2016.7998779.
  • [8] Venkataraman, M. N. D ., Computer vision based feature extraction of leaves for identification of medicinal values of plants, 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, India, 2016, pp. 1-5, https://doi.org/10.1109/ICCIC.2016.7919637.
  • [9] Nidhis, A. D., Pardhu, C. N. V., Reddy, K. C., Deepa, K., Cluster based paddy leaf disease detection, classification and diagnosis in crop health monitoring unit, Lecture Notes in Computational Vision and Biomechanics, vol 31. Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-04061-129.
  • [10] Madhuri Bandara, L. R., Texture dominant approach for identifying ayurveda herbal species using flowers, 2019 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2019, pp. 117-122, https://doi.org/10.1109/MERCon.2019.8818944.
  • [11] Saleem, G., Akhtar, M., Ahmed, N., Qureshi, W.S., Automated analysis of visual leaf shape features for plant classification, Computers and Electronics in Agriculture, Vol.157, 2019, pp. 270-280, https://doi.org/10.1016/j.compag.2018.12.038
  • [12] Raghukumar A.M., Narayanan, G., Comparison Of Machine Learning Algorithms For Detection Of Medicinal Plants, 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2020, pp. 56-60.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bb9eb84c-7653-4321-88a8-2bb9f4ce0ab7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.