Warianty tytułu
Innowacyjne materiały hydrożelowe modyfikowane gumą ksantanową – synteza i charakterystyka
Języki publikacji
Abstrakty
Due to their interesting features, hydrogels are attracting growing interest in the polymer materials market. Therefore, many studies are currently conducted to characterize these materials and to modify them in order to increase the range of their potential use. In the presented article, hydrogels based on acrylic acid and chitosan and modified with xanthan gum were obtained by photopolymerization. Their swelling ability and behaviour in solutions that simulate fluids in the human body were determined. The effect of incubation in various fluids on the chemical structure of the synthesized materials was characterized using spectroscopic analysis. Furthermore, the surface morphology of the attained materials was characterized with scanning electron microscopy (SEM).
Hydrożele z uwagi na swoje interesujące właściwości należą do grupy związków cieszącej się dużym zainteresowaniem na rynku materiałów polimerowych. Dlatego też prowadzone są badania mające na celu charakterystykę tych materiałów oraz ich modyfikację w celu zwiększenia możliwości ich potencjalnego zastosowania. W artykule przedstawiono syntezę hydrożeli na bazie kwasu akrylowego i chitozanu modyfikowanych gumą ksantanową. W toku badań określono zdolności pęcznienia hydrożeli oraz ich zachowanie w symulowanych płynach ustrojowych. Ponadto określono wpływ inkubacji otrzymanych materiałów w wybranych płynach na ich strukturę chemiczną z wykorzystaniem analizy spektroskopowej. Dodatkowo scharakteryzowano morfologię powierzchni hydrożeli za pomocą skaningowego mikroskopu elektronowego (SEM).
Czasopismo
Rocznik
Tom
Strony
79--91
Opis fizyczny
Bibliogr. 25 poz., wykr., wz., tab. il.
Twórcy
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, skudlacik@chemia.pk.edu.pl
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology
Bibliografia
- [1] Tyliszczak B., Pielichowski K., Charakterystyka matryc hydrożelowych zastosowania biomedyczne superabsorbentów polimerowych, „Czasopismo Techniczne”, 1, 2007, 59–167.
- [2] Ahmed E.M., Hydrogel: Preparation, characterization, and applications: A review, “Journal of Advances Resarch”, 6, 2015, 105–121.
- [3] Hoffman A.S., Hydrogels for biomedical applications, “Advances Drug Delivery”, 54, 2002, 3–12.
- [4] Rosiak J.M., Ulański P., Pajewski L.A., Yoshii F., Makuuchi K., Radiation Formation of Hydrogels for Biomedical Purposes, „Radiation Physics and Chemistry”, 46, 1995, 161–168.
- [5] Gimpel K., Luliński P., Maciejewska D., Wybrane technologie optymalizujące dostarczanie substancji czynnych w nowoczesnych postaciach leku, „Wydawnictwo Farmaceutyczne”, 3, 2009, 19–23.
- [6] Pluta J., Karolewicz B., Hydrożele: właściwości i zastosowanie w technologii postaci leku. I. Charakterystyka hydrożeli, „Polymer in Medicine”, 34, 2004, 1–12.
- [7] Jones A., Vaughan D., Hydrogel dressings in the menagement of a variety of wound types: A review, “Journal Ortopeadic Nursong”, 9, 2005, 1–11.
- [8] Drury J.L., Mooney D.J., Hydrogels for tissue engineering: scaffold design variables and applications. Review, “Biomaterials”, 24, 2003, 4337–4351.
- [9] Habibi H., Khosravi-Darani K., Effective variables on production and structure of xanthan gum and its food applications: A review, “Biocatalysis and Agricultural Biotechnology”, 10, 2017,130–140.
- [10] Ozdai M., Kurbanoglu E.B., Valorisation of chicken feathers for xanthan gum production using Xanthomonas campestris MO-03, „Journal of Genetic Engineering and Biotechnology”, 2018, In Press, DOI: https://doi.org/10.1016/j.jgeb.2018.07.005. (access)
- [11] Jafari M., Koocheki A., Milani E., Functional effects of xanthan gum on quality attributes and microstructure of extruded sorghum-wheat composite dougha and bread, „LWT”, 89, 2018, 551–558.
- [12] Zhang R., Tao Y., Xu W., Xiao S., Du S., Zhou Y., Hasan A., Rheological and controlled release properties of hydrogel based on mushroom hyperbranched polysaccharide and xanthan gum, “International Journal of Biological Macromolecules”, 2018, In Press, https://doi.org/10.1016/j.ijbiomac.2018.09.008. (access)
- [13] Xu J., He Z., Zeng M., Li B., Qin F., Wang L., Wu S., Chen J., Effect of xanthan gum on the release of strawberry flavour in formulated soy beverage, “Food Chemistry”, 228, 2017, 595–601.
- [14] Kumar A., Rao K.M., Han S.S., Application of xanthan gum as polysaccharide in tissue engineering, “Carbohydrate Polymers”, 180, 2018, 128–144.
- [15] Katzbauer B., Properties and applications of xanthan gum, “Polymer Degradation and Stability”, 59, 1998, 81–84.
- [16] Garcia-Ochoa F., Santos V.E., Casas J.A., Gomze E., Xanthan gum: production, recovery, and properties, “Biotechnology Advances”, 18, 2000, 549–579.
- [17] Tao Y., Zhang R., Xu W., Bai Z., Zhou Y., Zhao S., Xu Y., Yu D., Rheological behavior and microstructure of release-controlled hydrogels based on xanthan gum crosslinked with sodium trimetaphosphate, “Food Hydrocolloids”, 52, 2016, 923–933.
- [18] Bueno V.B., Bentini R., Catalani L.H., Petri D.F.S., Synthesis and swelling behavior of xanthan-based hydrogels, “Carbohydrate Polymers”, 92, 2013, 1091–1099.
- [19] Gils P.S., Ray D., Sahoo P.K., Characteristics of xanthan gum-based biodegradable superporous hydrogel, “International Journal of Biology Macromolecules”, 45, 2009, 364–371.
- [20] Mittal H., Parashar V., Mishra S.B., Mishra A.K., Fe3O4 MNPs and gum xanthan based hydrogels nanocomposites for the efficient capture of malachite green from aqueous solution, “Chemical Engineering Journal”, 255, 2014, 471–482.
- [21] Mittal H., Kumar V., Saruchi R.S.S., Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel, “International Journal Biology Macromolecules”, 89, 2016, 1–11.
- [22] Liu Z., Yao P., Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property, “Carbohydrate Polymers”, 132, 2015, 490–498.
- [23] Shalviri A., Liu Q., Abdekhodaie M.J., Wu X.Y., Novel modified starch-xanthan gum hydrogels for controlled drug delivery: Synthesis and characterization, “Carbohydrate Polymers”, 79, 2010, 898–907.
- [24] Shekarforoush E., Ajallouueian F., Zeng G., Mendes A.C., Chronakis I.S., Electrospun xanthan gum – chitosan nanofibers as delivery carrier of hydrophobic bioactives, “Materials Letters”, 228, 2018, 322–326.
- [25] Balasubramanian R., Kim S.S., Lee J., Novel synergistic transparent κ- Carrageenan/Xanthan gum/Gellan gum hydrogel film: Mechanical, thermal and water barrier properties, “International Journal of Biological Macromolecules”, 118(A), 2018, 561–568.
Uwagi
EN
Section "Chemistry"
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bb9c6657-7ac7-4a1f-b136-2319d85621f2