Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 59, no 2 | 121--132
Tytuł artykułu

On Morphisms between Indecomposable Projective Modules over Special Biserial Algebras

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the categorical behaviour of morphisms between indecomposable projective modules over a special biserial algebra A over an algebraically closed field, which are associated to arrows of the Gabriel quiver of A.
Wydawca

Rocznik
Strony
121--132
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
Bibliografia
  • [1] J. L. Alperin, Local Representation Theory. Modular Representations as an Introion to the Local Representation Theory of Finite Groups, Cambridge Stud. Adv. Math. 11, Cambridge Univ. Press, 1986.
  • [2] S. Ariki, Hecke algebras of classical type and their representation type, Proc. London Math. Soc. 91 (2005), 355–413; Corrigendum: ibid. 92 (2006), 342–344.
  • [3] I. Assem, D. Simson and A. Skowronski, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
  • [4] M. C. R. Butler and C. M. Ringel, Auslander–Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), 145–179.
  • [5] W. Crawley-Boevey, Tameness of biserial algebras, Arch. Math. (Basel) 65 (1995), 399–407.
  • [6] W. Crawley-Boevey and R. Vila-Freyer, The structure of biserial algebras, J. London Math. Soc. 57 (1998), 41–54.
  • [7] P. Dowbor and A. Skowronski, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311–337.
  • [8] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Math. 1428, Springer, 1990.
  • [9] K. Erdmann, T. Holm, O. Iyama and J. Schröer, Radical embeddings and representation dimension, Adv. Math. 185 (2004), 159–177.
  • [10] K. Erdmann and A. Skowronski, On Auslander–Reiten components of blocks and selfinjective biserial algebras, Trans. Amer. Math. Soc. 330 (1992), 165–189.
  • [11] R. Farnsteiner and A. Skowronski, Classification of restricted Lie algebras with tame principal block, J. Reine Angew. Math. 546 (2002), 1–45.
  • [12] —, —, The tame infinitesimal groups of odd characteristic, Adv. Math. 205 (2006), 229–274.
  • [13] P. Gabriel and Ch. Riedtmann, Group representations without groups, Comment. Math. Helv. 54 (1979), 240–287.
  • [14] I. M. Gelfand and V. A. Ponomarev, Indecomposable representations of the Lorentz group, Uspekhi Mat. Nauk 23 (1968), no. 2, 3–60 (in Russian).
  • [15] K. Igusa and G. Todorov, A characterization of finite Auslander–Reiten quivers, J. Algebra 89 (1984), 148–177.
  • [16] Z. Pogorzały, Regularly biserial algebras, in: Topics in Algebra, Part 1, Banach Center Publ. 26, PWN, Warszawa, 1990, 371–384.
  • [17] Z. Pogorzały and A. Skowronski, Selfinjective biserial standard algebras, J. Algebra 138 (1991), 491–504.
  • [18] Z. Pogorzały and M. Sufranek, Starting and ending components of the Auslander–Reiten quivers of a class of special biserial algebras, Colloq. Math. 99 (2004), 111–144.
  • [19] J. Schröer, On the Krull–Gabriel dimension of an algebra, Math. Z. 233 (2000), 287–303.
  • [20] —, On the infinite radical of a module category, Proc. London Math. Soc. 81 (2000), 651–674.
  • [21] D. Simson and A. Skowronski, Elements of the Representation Theory of Associative Algebras 2: Tubes and Concealed Algebras of Euclidean Type, London Math. Soc. Student Texts 71, Cambridge Univ. Press, 2007.
  • [22] —, —, Elements of the Representation Theory of Associative Algebras 3: Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge Univ. Press, 2007.
  • [23] A. Skowronski, Generalized standard Auslander–Reiten components, J. Math. Soc. Japan 46 (1994), 517–543.
  • [24] A. Skowronski and J. Waschbüsch, Representation-finite biserial algebras, J. Reine Angew. Math. 345 (1983), 172–181.
  • [25] B. Wald and J. Waschbüsch, Tame biserial algebras, J. Algebra 95 (1985), 480–500.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bb7efafd-3d3e-40c3-80b9-59180d2ff10e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.