Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 45, no 2 | 247--259
Tytuł artykułu

Darcy Forchheimer two-dimensional thin flow of Jeffrey nanofluid with heat generation/absorption and thermal radiation over a stretchable flat sheet

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work aims to study the combined effects of concentration and thermal radiation on a steady flow of Jeffrey nanofluid under the Darcy-Forchheimer relation over a flat nonlinear stretching sheet of variable thickness. A varying magnetic field influences normal to the flow movement is considered to strengthen the Jeffery nanofluid conductivity. However, a little effect of the magnetic Reynolds number is assumed to eliminate the impact of the magnetic field range. The higher-order nonlinear partial differential equations (PDEs) and convective boundary conditions are transformed into nonlinear ordinary differential equations (ODEs) by applying corresponding transformations. Then the ODEs are numerically solved with Runge-Kutta method via shooting technique. This process is applied for convergent relations of nanoparticle temperature, concentration, and velocity distributions. The influence of different fluid parameters like thermophoresis, melting parameter, Deborah number, chemical reaction parameter, Brownian motion parameter, inertia parameter and Darcy number on the flow profiles is explained through graphical analysis. Thermal radiation is emitted by accelerated charged particles, and the enhanced particle motion at higher temperatures causes a more significant discharge of radiation. Also, it was concluded that the heat generation parameter enhances the momentum boundary layer thickness and reduces the thermal and solutal boundary layer thickness over a Jeffrey nanofluid.
Wydawca

Rocznik
Strony
247--259
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
  • Institute of Aeronautical Engineering, Dundigal, Hyderabad, T.S. 500043, India
  • Department of IT, Mathematics section, University of Technology and Applied Sciences, Muscat 324, Oman
  • Vellore Institute of Technology, Kelambakkam - Vandalur Rd, Rajan Nagar, Chennai 600127, India
  • Department of Mathematics, CMR Engineering College, Medchal, T.S. 501401, India
  • Mohan Babu University, Sree Vidyanikethan Sree Sainath Nagar, Andhra Pradesh, Tirupati 517102, India
  • Osmania University, Main road, Amberpet, Hyderabad, Telangana T.S. 500007, India
  • Vellore Institute of Technology, Kelambakkam - Vandalur Rd, Rajan Nagar, Chennai, Tamil Nadu 600127, India
Bibliografia
  • [1] Waqas, H. (2021). Numerical simulation for magnetic dipole in bio convection flow of Jeffrey nanofluid with swimming motile microorganisms. Waves in Random and Complex Media, 1-18.doi: 10.1080/17455030.2021.1948634
  • [2] Pal, D., Mondal, S., & Mondal, H. (2019). Entropy generation on MHD Jeffrey nanofluid over a stretching sheet with nonlinear thermal radiation using spectral quasilinearization Method. International Journal of Ambient Energy, 42(15), 1712-1726. doi:10.1080/01430750.2019.1614984
  • [3] Abdullah Mohamed, R.A. (2020). MHD Jeffrey nanofluid flow over a stretching sheet through a porous medium in presence of nonlinear thermal radiation and heat generation/absorption. Transport Phenomena in Nano and Micro Scales, 8(1), 9-22. doi:10.22111/TPNMS.2019.29314.1172
  • [4] Turkyilmazoglu, M., & Pop, I. (2013). Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. International Journal of Heat and Mass Transfer, 57, 82-88. doi: 10.1016/ j.ijheatmasstransfer.2012.10.006
  • [5] Hayat, T. (2018). Simultaneous effects of melting heat and internal heat generation in stagnation point flow of Jeffrey fluid towards a nonlinear stretching surface with variable thickness. International Journal of Thermal Sciences, 132, 344-354. doi:10.1016/j.ijthermalsci.2018.05.047
  • [6] Mabood, F., Imtiaz, M., & Hayat, T. (2020). Features of Cattaneo‐Christov heat flux model for Stagnation point flow of a Jeffrey fluid impinging over a stretching sheet: A numerical study. Heat Transfer, 49(5), 27062716. doi: 10.1002/htj.21741
  • [7] Hayat, T., Kanwal, M., Qayyum, S., & Al Saedi, A. (2020). Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation. Physica A, 544, 123457. doi: 10.1016/j.physa.2019.123437
  • [8] Besthapu, P., Ul Haq, R., Bandari, S., & Al-Mdallal, Q.M. (2019). Thermal radiation and slip effects on stagnation point flow of MHD non-Newtonian nanofluid over a convective stretching surface. Neural Computing and Applications, 31, 207-221. doi:10.1007/s00521-017-2992-x
  • [9] Kumar, M. (2020). Study of differential transform technique for transient hydromagnetic Jeffrey fluid flow from a stretching sheet. Nonlinear Engineering, 9, 145-155. doi: 10.1515/nleng-2020-0004
  • [10] Sen, S.S.S., Das, M., & Shaw, S. (2021). Thermal dispersed homogeneous‐ heterogeneous reaction within MHD flow of a Jeffrey fluid in the presence of Newtonian cooling and nonlinear thermal radiation. Heat Transfer, 50(6), 5744-5759. doi:10.1002/htj.22146
  • [11] Asjad, M.I., Basit, A., Akgul, A., & Muhammad, T. (2021). Generalized thermal flux flow for Jeffrey fluid with Fourier law over an infinite plate. Mathematical Problems in Engineering, 5403879. doi: 10.1155/2021/5403879
  • [12] Muhammad, K., Hayat, T., & Alsaedi, A. (2021). Stagnation point flow of Jeffrey nanofluid with activation energy and convective heat and mass conditions. In Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 236(2). doi: 10.1177/09544089211044245
  • [13] Anitha, L., & Gireesha, B. J. (2023). Convective flow of Jeffrey nanofluid along an upright microchannel with Hall current and Buongiorno model: an irreversibility analysis. Applied Mathematics and Mechanics, 44, 16131628. doi: 10.1007/s10483-023-3029-6
  • [14] Hayat, T., Habibullah, A., Ahmad, B., & Alhodaly, M. S. (2021). Heat transfer analysis in convective flow of Jeffrey nanofluid by vertical stretchable cylinder. International Communications in Heat and Mass Transfer, 120, 104965. doi: 10.1016/ j.icheatmasstransfer.2020.104965
  • [15] Ur Rasheed, H., AL-Zubaidi, A., Islam, S., Saleem, S, Khan, Z., & Khan, W. (2021). Effects of Joule heating and viscous dissipation on magnetohydrodynamic boundary layer flow of Jeffrey nanofluid over a vertically stretching cylinder. Coatings, 11(21),353. doi: 10.3390/coatings11030353
  • [16] Ullah Khan, S., Ali Shehzadi, S., Munir Abbasi, F., & Hussain Arshad, S. (2021). Thermo diffusion aspects in Jeffrey nanofluid over periodically moving surface with time dependent thermal conductivity. Thermoscience, 25(1), 197-207. doi: 10.2298/TSCI190428312U
  • [17] Dadhich, Y., Jain, R., & Kaladgi, A.R. (2021). Thermally radiated Jeffery fluid flow with nanoparticles over a surface of varying thickness in the influence of heat source. Case Studies in Thermal Engineering, 28, 101549. doi: 10.1016/j.csite.2021.101549
  • [18] Hayat, T., Muhammad, T., Al-Mezal, S., & Liao, S. J. (2016). Darcy-Forchheimer flow with variable thermal conductivity and Cattaneo-Christov heat flux. International Journal of Numerical Methods for Heat & Fluid Flow, 26, 2355-2369. doi:10.1108/HFF-08-2015-0333
  • [19] Alshomrani, A. S., & Ullah, M. Z. (2019). Effects of homogeneous-heterogeneous reactions and convective condition in DarcyForchheimer flow of carbon nanotubes. Journal of Heat Transfer,141(1), 012405. doi: 10.1115/1.4041553
  • [20] Muhammad, T., Alsaedi, A., Shehzad, S.A., & Hayat, T. (2017). A revised model for Darcy Forchheimer flow of Maxwell nanofluid subject to convective boundary condition. Chinese Journal of Physics, 55(3), 963-976. doi: 10.1016/j.cjph.2017.03.006
  • [21] Mandal, P. K., & Seth, G. S. (2018). Hydromagnetic rotating flow of Casson fluid in Darcy-Forchheimer porous medium. MATEC Web of Conferences, 192, 02059. doi: 10.1051/matecconf/201819202059
  • [22] Bilal Ashraf, M., Hayat, T., Alsaedi, A., & Shehzad, S. A. (2015). Convective heat and mass transfer in MHD mixed convection flow of Jeffrey nanofluid over a radially stretching surface with thermal radiation. Journal of Central South University, 22, 1114-1123. doi: 10.1007/s11771-015-2623-6
  • [23] Hayat, T., Waqas, M., Ijaz Khan, M., & Alsaedi, A. (2017). Impacts of constructive and destructive chemical reactions in magnetohydrodynamic (MHD) flow of Jeffrey liquid due to non-linear radially stretched surface. Journal of Molecular Liquids, 225, 302-310. doi: 10.1016/j.molliq.2016.11.023
  • [24] Ali K., Akbar, M.Z, Farooq Iqbal, M., & Ashraf, M. (2014). Numerical simulation of heat and mass transfer in unsteady nanofluid between two orthogonally moving porous coaxial disks. AIP Advances, 4, 107113. doi: 10.1063/1.4897947
  • [25] Lund, L.A., Omar, Z., Khan, I., Raza, J., Bakouri, M., & Tlili, I. (2019). Stability analysis of Darcy-Forchheimer flow of Casson type Nanofluid over an exponential sheet: Investigation of critical points. Symmetry, 11(3), 412. doi: 10.3390/sym11030412
  • [26] Mabood, F. (2016). Numerical study of unsteady Jeffrey fluid flow with magnetic field effect and variable fluid. Journal of Thermophysics and Heat Transfer, 8, 041003. doi: 10.1115/1.4033013
  • [27] Khani, F., Farmany, A., Ahmadzadeh Raji, M., Aziz, A. & Samadi, F. (2009). Analytic solution for heat transfer of a third grade viscoelastic fluid in non-Darcy porous media with thermophysical effects. Communications in Nonlinear Science and Numerical Simulation, 14, 3867-3878. doi: 10.1016/j.cnsns.2009.01.031
  • [28] Hayat, T., Hussain, Z., Ahmad, B., & Alsaedi, A. (2017). Base fluids with CNTs as nanoparticles through non-Darcy porous medium in convectively heated flow: A comparative study. Advanced Powder Technology, 28, 855-865. doi: 10.1016/j.apt.2017.04.003
  • [29] Siddiq, M. K., Ashraf, M., & Mushtaq, T. (2021). MHD thermally radiative flow of Carreau fluid subjected to the stretching sheet by considering non-Darcy Forchheimer law. Pramana - Journal of Physics, 9, 164. doi: 10.1007/s12043-021-02192-z
  • [30] Madhu, M., & Prabhakar, B. (2021). Darcy-Forchheimer Flow of MHD Powell-Eyring nanoliquid over a nonlinear radially stretching disk with the impact of activation energy. Discontinuity, Nonlinearity, and Complexity, 10(14), 743-753. doi: 10.5890/DNC.2021.12.013
  • [31] Madkhali, H.A., Nawaz, M., Saif, R.S., Afzaal, M.F., Alharbi, S.O., & Kbiri Alaoui, M. (2021). Comparative analysis on the roles of different nanoparticles on mixed convection heat transfer in Newtonian fluid in Darcy-Forchheimer porous space subjected to convectively heated boundary. International Communications in Heat and Mass Transfer, 128, 105580. doi: 10.1016/ j.icheatmasstransfer.2021.105580
  • [32] Machireddy, G.R., Praveena, M.M., Rudraswamy N.G., & Kumar, G.K. (2021). Impact of Cattaneo-Christov heat flux on hydromagnetic flow of non-Newtonian fluids filled with DarcyForchheimer porous medium. Waves in Random and Complex Media, 1957178. doi: 10.1080/17455030.2021.1957178
  • [33] Ramesh, G.K., Madhukesh, J.K., Shah, N.A., & Yook, S.-J. (2023). Flow of hybrid CNTs past a rotating sphere subjected to thermal radiation and thermophoretic particle deposition. Alexandria Engineering Journal, 64, 969-979. doi: 10.1016/j.aej.2022.09.026
  • [34] Eswaramoorthi S., Loganathan, K., Faisal, M., Thongchai Botmart, T., & Shah, N.A. (2023). Analytical and numerical investigation of Darcy-Forchheimer flow of nonlinear-radiative non Newtonian fluid over a Riga plate with entropy optimization. Ain Shams Engineering Journal, 14, 101887. doi: 10.1016/j.asej.2022.101887
  • [35] Asghar A., Teh, Y.Y., & Zaimi, K. (2022). Two-Dimensional Mixed Convection and Radiative Al2O3-Cu/H2O Hybrid Nanofluid Flow over Vertical Exponentially Shrinking Sheet with Partial Slip Conditions. CFD Letters, 14(13), 22-28. doi:10.37934/cfdl.14.3.2238
  • [36] Asghar, A., Lund, L.A., Shah, Z., Vrinceanu, N., Deebani, W., & Shutaywi, M.. (2022). Effect of Thermal Radiation on Three-Dimensional Magnetized Rotating Flow of a Hybrid Nanofluid. Journal of Nanomaterials, 12(9), 1566. doi: 10.3390/nano12091566
  • [37] Sajjad, M., Mujtaba, A., Asghar A., & Teh Y. Y. (2022). Dual Solutions of Magnetohydrodynamics Al2O3+Cu Hybrid Nanofluid Over a Vertical Exponentially Shrinking Sheet by Presences of Joule Heating and Thermal Slip Condition. CFD Letters, 14(8), 100-115. doi: 10.37934/cfdl.14.8.100115
  • [38] Teh Y.Y., & Asghar, A. (2021). Three Dimensional MHD Hybrid Nanofluid Flow with Rotating Stretching/Shrinking Sheet and Joule Heating. CFD Letters, 13(8), 1-19. doi: 10.37934/cfdl.13.8.119
  • [39] Asghar, A., Teh, Y.Y., Zaimi, K.. (2022). Two-Dimensional Magnetized Mixed Convection Hybrid Nanofluid Over a Vertical Exponentially Shrinking Sheet by Thermal Radiation, Joule Heating, Velocity and Thermal Slip Conditions. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences,95(2), 159-179. doi: 10.37934/arfmts.95.2.159179
  • [40] Asghar A., Chandio A.F., Shah Z., Vrinceanu N., Deebani W., Shutaywi M., et al. (2023). Magnetized mixed convection hybrid nanofluid with effect of heat generation/absorption and velocity slip condition. Heliyon, 9(2), 13189. doi: 10.1016/j.heliyon.2023.e13189
  • [41] Asghar, V., Vrinceanu, N., Teh, Y.Y., Lund, L.A., Shah, Z., & Tirt, V. (2023). Dual solutions of convective rotating flow of three-dimensional hybrid nanofluid across the linearstretching/shrinking sheet. Alexandria Engineering Journal, 75, 297-312. doi: 10.1016/j.aej.2023.05.089
  • [42] Gohar., Khan, T.S., Sene, N., Mouldi, A., & Brahmia, A.(2022). Heat and Mass transfer of the Darcy-Forchheimer Casson Hybrid Nanofluid Flow due to an Extending Curved Surface. Journal of Nanomaterials, 3979168. doi: 10.1155/2022/3979168
  • [43] Sathyanarayana, M., Ramakrishna Goud, T. (2023). Numerical study of MHD Williamson-nano fluid flow past a vertical cone in the presence of suction/injection and convective boundary conditions. Archives of Thermodynamics, 44(2), 115-138. doi:10.24425/ather.2023.146561
  • [44] Mamatha, S. U., Ramesh Babu, K., Durga Prasad, P., Raju, C.S.K., & Varma, S.V.K. (2020). Mass transfer analysis of twophase flow in a suspension of microorganisms. Archives of Thermodynamics, 41(1), 175-192. doi: 10.24425/ ather.2020.132954
  • [45] Madhusudhana Rao, B., Gopal, D., Kishan, N., Ahmed, S., & Durga Prasad, P. (2020). Heat and mass transfer mechanism on three-dimensional flow of inclined magneto Carreau nanofluid with chemical reaction. Archives of Thermodynamics, 41(2), 223-238. doi: 10.24425/ather.2020.133630
  • [46] Hayat, T., Shah, F., Hussain, Z., & Alsaedi, A. (2019). Darcy Forchheimer flow of Jeffrey nanofluid with heat generation/absorption and melting heat transfer. Thermoscience, 23(6B),3833-3842. doi: 10.2298/TSCI171222314H
  • [47] Chandel, S., & Sood, S., (2023). Dynamics of Williamson hybrid nanofluid over an extending surface with non-linear convection and shape factors. Journal of Nanofluids, 12 (5), 1335-1350. doi:10.1166/jon.2023.2022
  • [48] Nogrehabadi, A., Pourrajab, R., & Ghalembaz, M. (2012). Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. International Journal of Thermal Sciences, 54, 253-261.doi: 10.1016/j.ijthermalsci.2011.11.017
  • [49] Rasool, G., Chamkha, A.J., Muhammad, T., Shafiq, A., & Khan, I. (2020). Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface. Propulsion and Power Research, 9(2), 159-168. doi: 10.1016/j.jppr.2020.04.003
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bb166d7a-12a0-4257-ba88-0e2a2f57dfac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.