Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 3 | 234--241
Tytuł artykułu

Thermal Protective Performance of Firefighters’ Clothing Under Low-Intensity Radiation Heat Exposure

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stored energy provided by the fabric assemblies will greatly influence the thermal protection performance (TPP) of firefighters’ protective clothing under low-intensity radiation heat exposure. In this study, two test methods, namely radiant protective performance (RPP) and stored energy test (SET), were used to investigate the TPP of the fabric assemblies. The results indicated that TSET value was lower than TRPP value because of the release of the stored energy in the fabric assemblies after heat exposure. Increasing the fabric layer numbers, air gap between the fabric assemblies would increase the time of TRPP and TSET, indicating that the thermal stored energy weakened the TPP of the firefighters’ protective clothing. Moreover, the TRPP and TSET of the fabric system would be increased when the moisture barrier was cut in the fabric combination system. These findings suggested that stored energy should be considered in analyzing the TPP of fabric assemblies.
Wydawca

Rocznik
Strony
234--241
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
  • Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing 312000, China
autor
  • Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China, yuzhicaicai@163.com
  • College of Advanced Textile, Wuhan Textile University, Wuhan 430200, China
autor
  • College of Advanced Textile, Wuhan Textile University, Wuhan 430200, China
Bibliografia
  • [1] Shalev, I., Barker, R. L. (1983). Analysis of heat transfer characteristics of fabrics in an open flame exposure. Textile Research Journal, 53(8), 475–482.
  • [2] Lee, Y. M., Barker, R. L. (1986). Effect of moisture on the thermal protective performance of heat-resistant fabrics. Journal of Fire Sciences, 4, 315–331.
  • [3] Sun, G., Yoo, H., Zhang, X., Pan, N. (2000). Radiant protective and transport properties of fabrics used by wildland firefighters. Textile Research Journal, 70(7), 567–573.
  • [4] Lawson, L. K., Crown, E. M., Ackerman, M. Y., Dale, J. D. (2004). Moisture effects in heat transfer through clothing systems for wildland firefighters. International Journal of Occupational Safety and Ergonomics, 10(3), 227–238.
  • [5] Wang, Y. Y., Lu, Y. H., Li, J., Pan, J. H. (2012). Effects of air gap entrapped in Multilayer fabrics and moisture on thermal protective performance. Fibers and Polymers, 13(5), 647–652.
  • [6] Li, J., Li, Y., Li, X. H. (2012). Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fires. Textile Research Journal, 82(12), 1235–1243.
  • [7] He, H. L., Yu, Z. C., Song, G. W. (2015). The effect of moisture and air gap on the thermal protective performance of fabric assemblies used by wildland firefighters. The Journal of The Textile Institute, 107(8), 1030–1036.
  • [8] Li, X. H., He, J., Li, J. (2014). Research on measuring stored thermal energy in protective clothing in thermal environment. China Personal Protective Equipment, (4), 45–47.
  • [9] Miao, Y., Li, J. (2016). Development and evaluation of firefighter’s clothing capable of enhancing heat dissipation. Journal of Textile Research, 37(1), 111–115.
  • [10] Zhu, F. L., Zhang, W. Y.(2006). Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model. Journal of Fibre Sciences, 24(6), 465–485.
  • [11] Su, Y., Li, J., Song, G. W. (2018). The effect of moisture content within multilayer protective clothing on protection from radiation and steam. International Journal of Occupational Safety and Ergonomics, 24(2), 190–199.
  • [12] He, J. Z., Li, J. (2016). Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time. Textile Research Journal, 86(3), 235–244.
  • [13] Rossi, R. M., Schmid, M., Camenzind, M. A. (2014). Thermal energy transfer through heat protective clothing during a flame engulfment test. Textile Research Journal, 84(13), 1451–1460.
  • [14] Zhai, L. N., Li, J. (2015). Prediction methods of skin burn for performance evaluation of thermal protective clothing. Burn, 41(7), 1385–1396.
  • [15] Torvi, D. A., Threlfall, T. G. (2006). Heat transfer model of flame resistant fabrics during cooling after exposure to fire. Fire Technology, 42(1), 27–48.
  • [16] Furmanski, P., Lapka, P. (2017). Evaluation of a temperature for the protective clothing-skin system based on the protective clothing-skin imitating materials results. International Journal of Heat and Mass Transfer, 114, 1331–1340.
  • [17] Wardiningsih, W., Troynikov, O. (2019). Energy absorption and thermal comfort of segmented pad for hip protective garment. International Journal of Clothing Science and Technology, 31(4), 564–577.
  • [18] Torvi, D. A., Hadjisophocleous, G. A. (1999). Research in protective clothing for firefighters: State of the art and future directions. Fire Technology, 35(2), 111–130.
  • [19] Torvi, D. A., Dale, J. D. (1998). Effects of variations in thermal properties on the performance of flame resistant fabrics for flash fires. Textile Research Journal, 68(11), 787–796.
  • [20] Song, G. W., Paskaluk, S., Sati, R., Crown, E. M., Dale, J. D., et al. (2011). Thermal protective performance of protective clothing used for low radiant heat protection. Textile Research Journal, 81(3), 311–323.
  • [21] Su, Y., He, J. Z., Li, J. (2016). Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure. Applied Thermal Engineering, 93, 1295–1303.
  • [22] Li, J., Lu, Y. H., Li, X. H. (2012). Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fires. Textile Research Journal, 82(12), 1235–1243.
  • [23] Zhang, M. Y., Miao, Y., Li, J. (2016). Influence factors and evaluation methods of stored thermal energy in firefighters protective clothing. Journal of Textile Research, 37(6), 171–176.
  • [24] He, H. L., Yu., Z. C. (2018). Effect of air gap entrapped in firefighter protective clothing on thermal resistance and evaporative resistance. Autex Research Journal, 18(1), 28–34.
  • [25] Barker, R. L., Deaton, A. S., Ross, K. A. (2010). Heat transmission and thermal energy storage in firefighter turnout suit materials. Fire Technology, 47(3), 549–563.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-badd025b-d398-4dcd-ae16-b1eaa284883e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.