Czasopismo
2013
|
Vol. 21, nr 2
|
21--29
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Mathematical model of SH wave scattering by an elastic thinwalled rigidly supported inclusion is presented. The inclusion is replaced by the effective boundary condition that allow to simplify calculations of the scattered field significantly. Using the proposed model the problem is reduced to the system of hyper singular integral equations that is solved numerically.The numerical algorithm is implemented in the application that is available through the Web page and can be used as a tool in non destructive testing of elastic materials with thin plane rigidly supported inclusions of arbitrary stiffness.
Czasopismo
Rocznik
Tom
Strony
21--29
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Institute of Information Technology Lodz University of Technology 215 Wólczańska Str. 90-924 Lodz Poland, volodymyr.yemyets@p.lodz.pl
autor
- Institute of Information Technology Lodz University of Technology 215 Wólczańska Str. 90-924 Lodz Poland, jan.rogowski@p.lodz.pl
Bibliografia
- [1] Niklasson, A. and Datta, S., On the modeling of guided waves in plates with thin superconducting layers, Thompson D.O., Chimenti D.E. (Eds.), Review of progress in quantitative NDE, American Institute of Physics, New York, Vol. 19A, 2000, pp. 185–192.
- [2] Pan, E. and Datta, S., Ultrasonic waves in multilayered superconducting plates, Journal of Applied Physics, Vol. 86, No. 1, 1999, pp. 543–551.
- [3] Rokhlin, S. and Wang, Y., Analysis of boundary conditions for elastic wave interaction with an interface between two solids, J. Acoust. Soc. Am., Vol. 89, 1991, pp. 503–515.
- [4] Emets, V. F.and Rogowski, J., Mathematical-Numerical Modelling of Ultrasonic Scattering Data from a Closed Obstacles and Inverse Analysis, Exit, Warsaw, 2013.
- [5] Bövik, P., On the modeling of thin interface layers in elastic and acoustic scattering problems, Quart. J. Mech., Appl. Math., Vol. 47, 1994, pp. 17–42.
- [6] Ammari, H. and He, S., Effective impedance boundary conditions for an inhomogeneous thin layer on a curved metallic surface, IEEE Trans. Antenn. Propag., Vol. 46, 1998, pp. 710–715.
- [7] Idemen, M., Straight forward derivatin of boundary conditions on sheet simulating an anisotropic thin layer, Elektron. Lett., Vol. 24, No. 11, 1988, pp. 663–665.
- [8] Emets, V. and Rogowski, J., Diffraction of Longitudinal Shear Waves on a Thin Piezoelectric Inclusion of Low Rigidity, Electrical review, Vol. 4, 2013, pp. 266–268.
- [9] Olson, P.and Böstrom, A., Elastic waves propagation in the presence of crack and thin interface layers, J. Tech. Phys., Vol. 31, 1990, pp. 393–400.
- [10] Johansson, G. and Niklasson, A. J., Approximate dynamic boundary conditions for a thin piezoelectric layer, Intern. J. Solids and Structures, Vol. 40, 2003, pp. 3477–3492.
- [11] Dundurus, J. and Sotiropoulos, D. A., On stress condition and computations at bi-material interfaces, Computational Mech., Vol. 21, 1998, pp. 300–305.
- [12] Niklasson, A. J., Datta, S. K., and Dunn, M. L., On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions, J. Acoust. Soc. Am., Vol. 108, 2000, pp. 924–933.
- [13] Emets, V. F., Kunets, Y. I., and Matus, V. V., Scattering of SH Waves by an ElasticThin-Walled Rigidly Supported Inclusion, Archive of Applied Mech., Vol. 73, 2004, pp. 769–780.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bab3d0dd-a132-4098-bac3-ecb2391c75bc