Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 27, No. 2 | 161--173
Tytuł artykułu

On the beam radiance of mid-infrared quantum cascade lasers : a review

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lasers emitting mid-infrared (MIR) beams have become indispensable for spectroscopy, free space communication or remote security measures. To the one of the most promising families of the lasers suitable for these applications certainly belongs a group of the Quantum Cascade Lasers (QCL). However, among the conditions they must satisfy there is a high enough radiance of the beam they emit. Radiance depends in a complicated way on the laser output power and optical quality of the laser beam. This paper has been devoted to a description and a short analysis of the factors that decide about radiance of so far developed QCLs. Literature concerning both single devices and QCL arrays operating in beam combining systems have been examined and results described. The survey may be useful for estimation of how far the QCLs have come of age.
Wydawca

Rocznik
Strony
161--173
Opis fizyczny
Bibliogr. 91 poz., wykr., tab., rys.
Twórcy
  • Institute of Electron Technology, 32/46 Lotnikow Ave., 02-668 Warsaw, Poland
  • Institute of Electron Technology, 32/46 Lotnikow Ave., 02-668 Warsaw, Poland, ekarb@ite.waw.pl
Bibliografia
  • [1] J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser”, Science 264 (1994) 553–556.
  • [2] J. Devenson, R. Teissier, O. Cathabard, A.N. Baranov, InAs/AlSb quantum cascade lasers emitting below 3 m, Appl. Phys. Lett. 90 (2007), 111118.
  • [3] J.A. Fan, M.A. Belkin, F. Capasso, S.P. Khanna, M. Lachab, A.G. Davies, E.H. Linfield, Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression, Appl. Phys. Lett. 92 (2008), 031106.
  • [4] M.A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation”, Appl. Phys. Lett. 92 (2008) 201101.
  • [5] R.F. Curl, F. Capasso, C. Gmahl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Quantum cascade lasers in chemical physics, Chem. Phys. Lett. 487 (2010) 1–18.
  • [6] R. Centeno, D. Marchenko, J. Mandon, S.M. Cristescu, G. Wulterkens, F.J.M. Harren, High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection, Appl. Phys. Lett. 105 (2014), 261907.
  • [7] A. Lyakh, R. Maulini, A.G. Tseokun, C. Kumar, N. Patel, Progress in high-performance quantum cascade lasers, Opt. Eng. 49 (11) (2010), 111105.
  • [8] R.M. Williams, J.F. Kelly, J.S. Hartman, S.W. Sharpe, M.S. Taubman, J.L. Hall, F. Capasso, C. Gmachl, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers, Opt. Lett. 24 (24) (1999) 1844–1846.
  • [9] P. Rauter, F. Capasso, Multi -wavelength quantum cascade laser arrays, Laser Photon. Rev. 9 (5) (2015) 452–477.
  • [10] M. Razeghi, Q.Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, S. Slivken, Quantum cascade lasers: from tool to product, Opt. Express 23 (7) (2015) 8462–8475.
  • [11] A. Bismuto, St. Blaser, R. Terazzi, T. Gresch, A. Muller, High performance, low dissipation quantum cascade lasers across the mid-IR range, Opt. Express 23 (4) (2015) 5477–5484.
  • [12] M. Troccoli, High-power emission and single-mode operation of quantum cascade lasers for industrial applications, IEEE J. Sel. Top. Quant. Electron. 21 (6) (2015), 1200207.
  • [13] M.S. Vitiello, G. Scalari, B. Williams, P. De Natale, Quantum cascade lasers: 20 years of challenges, Opt. Express 23 (4) (2016) 5167–5172.
  • [14] P. Shukla, J. Lawrence, Y. Zhang, Understanding laser beam brightness: a review and new prospective in material processing, Opt. Laser Technol. 75 (2015) 40–51.
  • [15] M. Trocolli, D. Bour, S. Corzine, G. Höfler, A. Tandon, D. Mars, D.J. Smith, L. Diehl, F. Capasso, Low-threshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapour phase epitaxy, Appl. Phys. Lett. 85 (24) (2004) 5842.
  • [16] F. Capasso, High-performance mid-infrared quantum cascade lasers, Opt. Eng. 49 (11) (2010), 111102-1.
  • [17] M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, S. Slivken, Recent advances in mid infrared (3-5m) Quantum Cascade Lasers, Opt. Mater. Express 3 (11) (2013) 1872.
  • [18] D. Botez, J.D. Kirch, C. Boyle, K.M. Oresick, C. Sigler, H. Kim, Y.V. Flores, High-efficiency, high-power mid-infrared quantum cascade lasers [Invited], Opt. Mater. Express 8 (5) (2018) 1378–1398.
  • [19] D. Botez, C.C. Chang, L.J. Mawst, Temperature sensitivity of the electro-optical characteristics for mid-infrared ( = 3-16 m)-emitting quantum cascade lasers”, J. Phys. D Appl. Phys. 49 (4) (2015), 043001.
  • [20] M. Lindskog, J.M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, A. Wacker, Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions, Appl. Phys. Lett. 105 (10) (2014) 0–5.
  • [21] M. Bugajski, P. Gutowski, P. Karbownik, A. Kolek, G. Hałdas,´ K. Piersci ´ nski, ´ D. Piersci ´ nka, ´ J. Kubacka-Traczyk, I. Sankowska, A. Trajnerowicz, K. Kosiel, A. Szerling, J. Grzonka, K. Kurzydłowski, T. Slight, W. Meredith, Mid-IR quantum cascade lasers: device technology and non-equilibrium Green’s function modelling of electro-optical characteristics, Phys. Status Solidi B 251 (6) (2014) 1144–1157.
  • [22] A. Kolek, G. Hałdas,´ M. Bugajski, K. Piersci ´ nski, ´ Piotr Gutowski, Impact of injector doping on threshold current of mid-infrared quantum cascade laser–Non-Equilibrium green’s function analysis”, IEEE J. Sel. Top. Quant. Electron. 21 (1) (2015), 1200110.
  • [23] A.E. Siegman, Defining, measuring, and optimizing laser beam quality, SPIE (1868) 2–12.
  • [24] M.W. Sasnett, T.F. Johnston Jr., Beam characterization and measurement of propagation attributes, SPIE 1414, Laser Beam Diagnostics (1991) 21–32.
  • [25] EN ISO 11146-2:2005, Lasers and Laser-related Equipment - Test Methods for Laser Beam Widths, Divergence Angles and Beam Propagation Ratios - Part 2: General Astigmatic Beams, 2005.
  • [26] T.Y. Fan, Laser beam combining for high-power high-radiance sources”, IEEE J. Sel. Top. Quantum Electron. 11 (3) (2005) 567–577.
  • [27] K. Krishnaswami, B.E. Bernacki, B.D. Cannon, N. Ho, N.C. Anheier, Emission and propagation properties of midinfrared quantum cascade lasers, IEEE Photon. Technol. Lett. 20 (4) (2008) 306–308.
  • [28] R. Maulini, A. Lyakh, A. Tsekoun, R. Go, Ch. Pflügl, L. Diehl, F. Capasso, C. Kumar, N. Patel, High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings, Appl. Phys. Lett. 95 (2009), 151112.
  • [29] D. Piersci ´ nska, ´ P. Gutowski, G. Hałdas,´ A. Kolek, I. Sankowska, J. Grzonka, J. Mizera, K. Piersci ´ nski, ´ M. Bugajski, Above room temperature operation of InGaAs/AlGaAs/GaAs quantum cascade lasers, Semicond. Sci. Technol. 33 (2018), 035006.
  • [30] Y. Bai, S.R. Darvish, N. Bandyopadhyay, S. Slivken, M. Razeghi, Optimizing facet coating of quantum cascade lasers for low power consumption, J. Appl. Phys. 109 (2011), 035006.
  • [31] A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, D. Bour, Narrow stripe-width, low-ridge high power quantum cascade lasers, Appl. Phys. Lett. 90 (2007), 141107.
  • [32] A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai, M. Razeghi, Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency, Appl. Phys. Lett. 91 (2007), 071101.
  • [33] Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, M. Razeghi, Highly temperature insensitive quantum cascade lasers, Appl. Phys. Lett. 97 (2010), 251104.
  • [34] A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q.J. Wang, F. Capasso, C. Kumar, N. Patel, 3 W continues-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach, Appl. Phys. Lett. 95 (2009), 141113.
  • [35] A. Lyakh, C. Pflügl, L. Diehl, Q.J. Wang, F. Capasso, X.J. Wang, J.Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, 1.6W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6m, Appl. Phys. Lett. 92 (2008) 111110.
  • [36] J.C. Shin, M. D’Souza, Z. Liu, J. Kirch, L.J. Mawst, D. Botez, I. Vurgaftman, J.R. Meyer, Highly temperature insensitive, deep-well 4.8 m emitting quantum cascade semiconductor lasers, Appl. Phys. Lett. 94 (20) (2009) 2007–2010.
  • [37] Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, M. Razeghi, Room temperature quantum cascade lasers with 27% wall plug efficiency, Appl. Phys. Lett. 98 (2011), 181102.
  • [38] F. Xie, C. Caneau, H.P. Leblanc, N.J. Visovsky, S.C. Chaparala, O.D. Deichmann, T. Day., “Room temperature CW operation of short wavelength quantum cascade lasers made of strain balanced GaxIn1-xAs/AlyIn1-yAs material on InP substrates, IEEE J. Sel. Top. Quantum Electron. 17 (2011) 1445–1452.
  • [39] Y. Bai, S. Slivken, S.R. Darvish, A. Haddadi, B. Gökden, M. Razeghi, High power broad area quantum cascade lasers, Appl. Phys. Lett. 95 (2009), 221104.
  • [40] M.P. Semtsiv, W. Masselink, Above room temperature continuous wave operation of a broad-area quantum-cascade laser, Appl. Phys. Lett. 109 (2016), 203502.
  • [41] I. Sergachev, R. Maulini, A. Bismuto, S. Blaser, T. Gresch, A. Muller, Gain-guided broad area quantum cascade lasers emitting 23,5 W peak power at room temperature, Opt. Express 24 (17) (2016) 19063–19071.
  • [42] A. Tsekoun, R. Go, M. Pushkrsky, M. Razegi, C. Kumar, N. Patel, Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process, PNAS 103 (13) (2006) 4831–4835.
  • [43] C.A. Evans, V.D. Jovanovic, ´ D. Indjin, Z. Ikonic, ´ P. Harrison, Investigation of thermal effects in quantum-cascade lasers, IEEE J. Quant. Electron. 42 (9) (2006) 859–861.
  • [44] L. Missaggia, Ch. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, W. Herzog, Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture, SPIE 9730 (2016), 973008-1.
  • [45] D. Piersci ´ nska, ´ K. Piersci ´ nski, ´ M. Morawiec, P. Karbownik, P. Gutowski, M. Bugajski, CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers, Semicond. Sci. Technol. 31 (2016), 115006.
  • [46] D. Piersci ´ nska, ´ Thermoreflectance spectroscopy-Analysis of thermal processes in semiconductor lasers, J. Phys. D Appl. Phys. 51 (2018), 013001.
  • [47] Q. Yang, M. Kinzer, F. Fuchs, S. Hugger, B. Hinkov, W. Bronner, R. Lösch, R. Aidam, J. Wagner, Beam steering and lateral hole burning in mid-infrared quantum-cascade lasers, Phys. Status Solidi (c) 9 (2) (2012) 302–305.
  • [48] Q.Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, M. Razeghi, 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers, Appl. Phys. Lett. 98 (2011) 81106.
  • [49] C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D.L. Sivco, A.M. Sergent, A.Y. Cho, Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers, IEEE J. Quant. Electron. 38 (6) (2002) 569.
  • [50] B.G. Lee, M.A. Belkin, R. Audet, J. MacArthur, L. Diehl, Ch. Pflügl, F. Capasso, Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, Appl. Phys. Lett. 91 (2007), 231101.
  • [51] S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q.Y. Lu, M. Razeghi, Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature, Appl. Phys. Lett. 100 (2012), 261112.
  • [52] R. Centeno, D. Marchenko, J. Mandon, S.M. Cristescu, G. Wulterkens, F.J.M. Harren, High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection, Appl. Phys. Lett. 105 (2014) 261907. B. Mroziewicz, E. Pruszynska-Karbownik ´ / Opto-Electronics Review 27 (2019) 161–173 173
  • [53] S. Ahn, C. Schwarzer, T. Zederbauer, D.C. MacFarland, H. Detz, A.M. Andrews, W. Schrenk, G. Strasser, High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet, Appl. Phys. Lett. 104 (2014) 105110.
  • [54] Y. Bai, S. Slivken, Q.Y. Lu, N. Bandyopadhyay, M. Razeghi, Angled cavity broad area quantum cascade lasers, Appl. Phys. Lett. 101 (2012), 081106.
  • [55] D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, M. Razeghi, High brightness angled cavity quantum cascade lasers”, Appl. Phys. Lett. 106 (2015), 091105.
  • [56] C. Boyle, C. Sigler, J.D. Kirch, D.F. Lindberg, T. Earles, D. Botez, J. Mawst, High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode, Appl. Phys. Lett. 108 (2016) 121107.
  • [57] M. Trocolli, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Mid-infrared (=7.4 m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality, Appl. Phys. Lett. 80 (2002) 4103.
  • [58] B. Hinkov, M. Beck, E. Gini, J. Faist, Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power, Opt. Express 21 (16) (2013) 19180–19186.
  • [59] L. Nähle, J. Semmel, W. Kaiser, S. Höfling, A. Forchal, Tapered quantum cascade lasers, Appl. Phys. Lett. 91 (2007), 181122.
  • [60] A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, Tapered 4.7 m quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power, Opt. Express 20 (4) (2012) 4382–4388.
  • [61] P. Rauter, S. Menzel, B. Gokden, A.K. Goyal, Ch.A. Wang, A. Sanchez, G. Turner, F. Capasso, Single-mode tapered quantum cascade lasers, Appl. Phys. Lett. 102 (2013), 181102.
  • [62] S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, F. Capasso, Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K, Opt. Express 19 (17) (2011) 16229–16235.
  • [63] M. Sakowicz, E. Pruszynska-Karbownik, A. Kuzmicz, K. Janus, P. Gutowski, K. Michalak, Mid-infrared quantum cascade lasers with nonuniformly tapered waveguides, J. Light. Technol. 37 (10) (2019) 2324–2327.
  • [64] B. Gökden, T.S. Mansuripur, R. Blanchard, Ch. Wang, A. Goyal, A. Sanchez-Rubio, G. Turner, F. Capasso, “High-brightness tapered quantum cascade lasers, Appl. Phys. Lett. 102 (2013), 053503.
  • [65] R. Blanchard, T.S. Marisuripur, B. Gökhden, N. Yu, M. Kats, P. Genevet, K. Fujita, T. Edamura, M. Yamanishi, F. Capasso, High-power low-divergence tapered quantum cascade lasers with plasmonic collimators, Appl. Phys. Lett. 102 (2013), 191114.
  • [66] B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, M. Razegi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at 4.36 ˜ m, Appl. Phys. Lett. 97 (2010), 131112.
  • [67] D. Botez, L. Mawst, G. Peterson, T.J. Roth, Phase - locked arrays of antiguides: modal content and discrimination, IEEE J. Quant. Electron. 26 (3) (1990) 482–495.
  • [68] R.F. Nabiev, D. Botez, Comprehensive above -Threshold analysis of antiguided diode laser arrays, IEEE J. Sel. Top. Quant. Electron. 1 (2) (1995) 138–149.
  • [69] R. Colombelli, K. Srinivasan, M. Trocolli, O. Painter, C.F. Gmachl, D.M. Tennant, A.M. Sergent, D.L. Sivco, A.Y. Cho, F. Capasso, Quantum cascade surface-emitting photonic crystal laser”, Science 302 (21) (2003) 1374.
  • [70] C. Sigler, J.D. Kirch, L.J. Mawst, Z. Yu, D. Botez, Design for high power, single-lobe, grating-surface-emitting quantum cascade lasers, Appl. Phys. Lett. 104 (2014) 131108.
  • [71] J.D. Kirch, C.C. Chang, C. Boyle, L.J. Mawst, D. Lindberg III, T. Earles, D. Botez, 5.5 W near-diffraction-power from resonant leaky wave coupled phase-locked arrays of quantum cascade lasers, Appl. Phys. Lett. 106 (2015), 061113.
  • [72] C. Sigler, C.A. Boyle, J.D. Kirch, D. Lindberg III, T. Earles, D. Botez, L.J. Mawst, 4.7 m -Emitting near-resonant leaky wave-coupled quantum cascade laser phase-locked arrays, IEEE J. Sel. Top. Quantum Electron. 23 (6) (2017), 1200706.
  • [73] L.J. Mawst, C. Sigler, C. Boyle, J.D. Kirch, K. Oresick, H. Kim, D. Lindberg, T. Earles, D. Botez, High power MOCVD-grown quantum cascade lasers, in: Proc. 31 IEEE Photonics Conference (IPC), 2018.
  • [74] C. Sigler, C. Chang, J.D. Kirch, L.J. Mawst, D. Botez, T. Earles, Design of resonant leaky-wave coupled phase-locked arrays of Mid-IR quantum cascade lasers, IEEE J. Sel. Top. Quant. Electron. 21 (6) (2015), 1200810.
  • [75] B.G. Lee, M.A. Belkin, Ch. Pflügl, L. Diehl, H.A. Zhang, R.M. Audet, J.Mac Arthur, D.P. Bour, S.W. Corzine, G.E. Höfler, F. Capasso, DFB quantum cascade laser arrays, IEEE J. Quant. Electron. 45 (5) (2009) 554–565.
  • [76] B.G. Lee, J. Kansky, A.K. Goyal, Ch. Pflügl, L. Diehl, M.A. Belkin, A. Sanchez, F. Capasso, “Beam combining of quantum cascade laser arrays, Opt. Express 17 (18) (2009) 16216–16224.
  • [77] P. Rauter, S. Menzel, A.K. Goyal, Ch.A. Wang, A. Sanchez, G. Turner, F. Capasso, High-power arrays of quantum cascade laser master-oscillator power-amplifiers”, Opt. Express 21 (4) (2013) 4518–4530.
  • [78] P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, F. Capasso, Master-oscillator power-amplifier quantum cascade laser array, Appl. Phys. Lett. 101 (2012), 261117.
  • [79] Y. Liu, Y. Braiman, “Synchronization of high-power broad-area semiconductor lasers, J. Sel. Top. Quant. Electron. 10 (5) (2004) 1013–1024.
  • [80] G. Bloom, Ch. Larat, E. Lallier, M. Carras, X. Marcadet, Coherent combining of two quantum cascade lasers in a Michelson cavity, Opt. Lett. 35 (11) (2010) 1917–1919.
  • [81] L.K. Hoffmann, C.A. Hurni, S. Schartner, M. Austerer, E. Mujagic, ´ M. Nobile, A. Benz, W. Schrenk, A.M. Andrews, P. Klang, G. Strasser, Coherence in Y-coupled quantum cascade lasers, Appl. Phys. Lett. 91 (2007) 161106.
  • [82] L.K. Hoffmann, M. Klinkmüller, E. Mujagic, ´ M.P. Semtsiv, W. Schrenk, W.T. Masselink, G. Strasser, Tree array quantum cascade laser, Opt. Express 17 (2) (2009) 649–657.
  • [83] A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C.K.N. Patel, Continuous wave operation of buried heterostructure 4.6 m quantum cascade laser Y-junctions and tree arrays, Opt. Express 22 (1) (2014) 1203–1208.
  • [84] W. Zhou, S. Slivken, M. Razeghi, Phase-locked, high power, mid-infrared quantum cascade laser arrays, Appl. Phys. Lett. 112 (18) (2018), 181106.
  • [85] G. Bloom, C. Larat, E. Lalier, G. Lehoucq, S. Bansropun, M.-S.L. Lee-Bouhours, B. Loiseaux, M. Carras, X. Marcadet, G. Lucas-Leclin, P. Georges, Passive coherent beam combining of quantum-cascade lasers with a Dammann grating, Opt. Lett. 36 (19) (2011) 3810–3812.
  • [86] V. Daneu, A. Sanchez, T.Y. Fan, H.K. Cho, G.W. Turner, C.C. Cook, Spectral beam combining of a broad-stripe diode laser array in an external cavity, Opt. Lett. 25 (2000) 405–407.
  • [87] B. Chann, R.K. Huang, L.J. Missagia, C.T. Harris, Z.L. Liau, A.K. Goyal, J.P. Donnelly, T.Y. Fan, A. Sanchez-Rubio, G.W. Turner, Near-diffraction-limited diode laser arrays by wavelength beam combining, Opt. Lett. 30 (16) (2005) 2104.
  • [88] T.Y. Fan, A. Sanchez, V. Daneu, R.L. Aggarval, S.C. Buchter, A. Goyal, Ch.C. Cook, Laser beam combining for power and brightness scaling, Aerospace Conf. Proc. IEEE 3 (2000) 49–54.
  • [89] A. Sanchez-Rubio, T.Y. Fan, S.J. Augst, A.K. Goyal, K.J. Creedon, J.T. Gopinath, V. Daneu, B. Chann, R. Huang, Wavelength beam combining for power and brightness scaling of laser systems, Lincoln Lab. Journal 20 (2) (2014) 52–65.
  • [90] A.K. Goyal, M. Spencer, O. Shatrovoy, B.G. Lee, L. Diehl, Ch. Pfluegl, A. Sanchez, F. Capasso, Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays, Opt. Express 19 (27) (2011) 26725–26731.
  • [91] S. Hugger, R. Aidam, W. Bronner, F. Fuchs, R. Lösch, Q. Yang, J. Wagner, E. Romasew, M. Raab, H.D. Tholl, B. Höfer, A.L. Matthes, Power scaling of quantum cascade lasers via multiemiter beam combining, Opt. Eng. 49 (11) (2010), 111111-(1-6).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-baadb129-e72f-4667-814f-9f1808be0884
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.