Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | R. 98, nr 7 | 131--136
Tytuł artykułu

SP8T switch design using cascaded SPDT switches for monostatic microwave imaging system in medical application

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Konstrukcja przełącznika SP8T z wykorzystaniem kaskadowych przełączników SPDT do monostatycznego systemu obrazowania mikrofalowego w zastosowaniach medycznych
Języki publikacji
EN
Abstrakty
EN
This paper proposes a single pole eight throw switch (SP8T) using cascaded single pole double throw (SPDT) switches. The switch design is to control eight antenna array in the monostatic microwave imaging system for medical application. A mathematical modeling was done for a simple series-shunt SPDT switch for the analysis of insertion loss, return loss and isolation. Then, a proper selection of SPDT switch topologies was carried out in a simulation software in order to get ultra wideband (UWB) performance of the SP8T switch design. As a result, the proposed SP8T switch produced 9.3 GHz of isolation bandwidth that can be used for a Gaussian pulse up to 9.3 GHz bandwidth (from 1.7 GHz to 11 GHz frequency spectrum).
PL
W niniejszym artykule zaproponowano jednobiegunowy przełącznik ośmiorurowy (SP8T) wykorzystujący kaskadowe jednobiegunowe przełączniki dwustanowe (SPDT). Konstrukcja przełącznika służy do sterowania układem ośmiu anten w monostatycznym mikrofalowym systemie obrazowania do zastosowań medycznych. Przeprowadzono modelowanie matematyczne prostego przełącznika SPDT z bocznikiem szeregowym do analizy tłumienia wtrąceniowego, tłumienia odbiciowego i izolacji. Następnie dokonano właściwego wyboru topologii przełącznika SPDT w oprogramowaniu symulacyjnym, aby uzyskać wydajność ultraszerokopasmową (UWB) projektu przełącznika SP8T. W rezultacie proponowany przełącznik SP8T wytworzył pasmo izolacji 9,3 GHz, które można wykorzystać dla impulsu Gaussa o szerokości do 9,3 GHz (widmo częstotliwości od 1,7 GHz do 11 GHz).
Wydawca

Rocznik
Strony
131--136
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Microwave Research Group, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, noorazwan@utem.edu.my
  • Microwave Research Group, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, m021710008@student.utem.edu.my
autor
  • Microwave Research Group, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, adib@utem.edu.my
  • Microwave Research Group, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, zahriladha@utem.edu.my
  • Microwave Research Group, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, imranibrahim@utem.edu.my
  • Microwave Research Group, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, p021710007@student.utem.edu.my
  • Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia, ariff@uthm.edu.my
Bibliografia
  • [1] Kikkawa, Takamaro, Yoshihiro Masui, Akihiro Toya, Hiroyuki Ito, Takuichi Hirano, Tomoaki Maeda, Masahiro Ono et al. "CMOS Gaussian Monocycle Pulse Transceiver for Radar-Based Microwave Imaging." IEEE Transactions on Biomedical Circuits and Systems 14, no. 6 (2020): 1333-1345.
  • [2] Feghhi, Rouhollah, Daniel Oloumi, and Karumudi Rambabu. "Tunable Subnanosecond Gaussian Pulse Radar Transmitter: Theory and Analysis." IEEE Transactions on Microwave Theory and Techniques 68, no. 9 (2020): 3823-3833.
  • [3] Pozar, David M. Microwave engineering. John Wiley & Sons, 2011.
  • [4] Bashri, M.S.R., Tughrul Arslan, Wei Zhou, and Nakul Haridas. "A compact RF switching system for wearable microwave imaging." In 2016 Loughborough Antennas & Propagation Conference (LAPC), pp. 1-4. IEEE, 2016.
  • [5] Nuruliswa Abdullah, Mohamad Z. A. Abd. Aziz, Abd Shukur Jaafar. "Design of a high directive sensor for microwave imaging application." Przegląd Elektrotechniczny, no. 10 (2021): 8-11
  • [6] Al-Gburi, Ahmed Jamal Abdullah, Imran-Mohd Ibrahim, Zahriladha Zakaria, M. Y. Zeain, Husam Alwareth, Ayman Mohammed Ibrahim, and Hussam Hamid Keriee. "High Gain of UWB CPW-fed Mercedes-Shaped Printed Monopole Antennas for UWB Applications." Przegląd Elektrotechniczny, no. 5 (2021): 70-73
  • [7] Charvat, Gregory L., Leo C. Kempel, Edward J. Rothwell, Christopher M. Coleman, and Eric L. Mokole. "A through-dielectric ultrawideband (UWB) switched-antenna-array radar imaging system." IEEE Transactions on Antennas and Propagation 60, no. 11 (2012): 5495-5500.
  • [8] Kuwahara, Yoshihiko, and A. M. Malik. "Microwave imaging for early breast cancer detection." New Perspect. Breast Imaging. IntechOpen (2017): 45-71.
  • [9] Brovoll, Sverre, Tor Berger, Yoann Paichard, Øyvind Aardal,Tor Sverre Lande, and Svein-Erik Hamran. "Time-lapse imaging of human heart motion with switched array UWB radar." IEEE Transactions on Biomedical Circuits and Systems 8, no. 5 (2014): 704-715.
  • [10] Song, Hang, Shinsuke Sasada, Takayuki Kadoya, Morihito Okada, Koji Arihiro, Xia Xiao, and Takamaro Kikkawa. "Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and pilot clinical study." Scientific reports 7, no. 1 (2017): 1-11.
  • [11] Islam, M.T., M. Z. Mahmud, M. Tarikul Islam, S. Kibria, and M. Samsuzzaman. "A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array." Scientific reports 9, no. 1 (2019): 1-13.
  • [12] Ha, Byeong Wan, Chang Won Seo, Choon Sik Cho, and Young-Jin Kim. "Wideband high-isolation SPDT RF switch in 0.18-um SiGe BiCMOS technology." Analog Integrated Circuits and Signal Processing 87, no. 1 (2016): 11-19.
  • [13] Shairi, N. A., Z. Zakaria, A. M. S. Zobilah, B. H. Ahmad, and P. W. Wong. "Design of SPDT switch with transmission line stub resonator for WiMAX and LTE in 3.5 GHz band." ARPN J. Eng. Appl. Sci 11, no. 5 (2016): 3198-3202.
  • [14] Azhari, Afreen, Sugitani Takumi, Sogo Kenta, Takamaro Kikkawa, and Xia Xiao. "A 17 GHz bandwidth 1.2 mW CMOS switching matrix for UWB breast cancer imaging." In 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, pp. 109-112. IEEE, 2014.
  • [15] Chen, Lei, Liang Tian, Jin Zhou, Ai-bo Huang, and Zongsheng Lai. "A high performance PD SOI CMOS single-pole double-throw T/R switch for 2.4 GHz wireless applications." In 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1-4. IEEE, 2009.
  • [16] Azhari, Afreen, Kuwano Yuki, Xia Xiao, and Takamaro Kikkawa. "A Tx/Rx 3-20-GHz DP16T switching matrix for breast cancer detection system." In 2016 IEEE MTT-S Latin America Microwave Conference (LAMC), pp. 1-4. IEEE, 2016.
  • [17] Zobilah, Abdullah Mohammed Saghir, Noor Azwan Shairi, Zahriladha Zakaria, and M. S. Jawad. "RF switches in wide-, broad-, and multi-band RF front-end of wireless communications: An overview." ARPN J. Eng. Appl. Sci 11, no. 5 (2016): 3244-3248.
  • [18] Shairi, Noor Azwan, B. H. Ahmad, and A. C. Z. Khang. "Design and analysis of broadband high isolation of discrete packaged PIN diode SPDT switch for wireless data communication." In 2011 IEEE International RF & Microwave Conference, pp. 91-94. IEEE, 2011.
  • [19] Yu, Bo, Kaixue Ma, Fanyi Meng, Kiat Seng Yeo, Parthasarathy Shyam, Shaoqiang Zhang, and Purakh Raj Verma. "Ultrawideband low-loss switch design in high-resistivity trap-rich SOI with enhanced channel mobility." IEEE Transactions on Microwave Theory and Techniques 65, no. 10 (2017): 3937-3949.
  • [20] Mou, Shouxian, Ma Kaixue, Yeo Kiat Seng, Bharatha Kumar Thangarasu, and Nagarajan Mahalingam. "A DC to 30GHz ultra-wideband cmos T/R switch." In 2011 Semiconductor Conference Dresden, pp. 1-4. IEEE, 2011.
  • [21] Li, Qiang, and Yue Ping Zhang. "CMOS T/R switch design: Towards ultra-wideband and higher frequency." IEEE journal of solid-state circuits 42, no. 3 (2007): 563-570.
  • [22] Liu, Hao-En, Xiang Lin, Hong-Yeh Chang, and Yu-Chi Wang. "10-MHz-to-70-GHz ultra-wideband low-insertion-loss SPST and SPDT switches using GaAs PIN diode MMIC process." In 2018 Asia-Pacific Microwave Conference (APMC), pp. 1217-1219. IEEE, 2018.
  • [23] Zhu, Hao-Ran, Xin-Yu Ning, Zhi-Xiang Huang, Yong-Xin Guo, and Xian-Liang Wu. "Miniaturized, Ultra-Wideband and High Isolation Single Pole Double Throw Switch by Using π-Type Topology in GaAs pHEMT Technology." IEEE Transactions on Circuits and Systems II: Express Briefs 68, no. 1 (2020): 191-195.
  • [24] Hadi, MH Abdul, B. H. Ahmad, Peng Wen Wong, and N. A. Shairi. "An overview of isolation improvement techniques in RF switch." ARPN Journal of Engineering and Applied Sciences 9, no. 3 (2014): 342-348.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ba934eeb-dc89-4b5b-a135-4f84121ebaad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.