Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 27 | 161--173
Tytuł artykułu

Analysis of the effect of selected additives of aviation lubricants on their performance properties

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents typical lubricants used in aviation and examples of operational problems resulting from, among other things, the introduction of lubricant replacements for old aviation technology or new additives to improve the lubricity of common aviation fuel. A selected aviation fuel additive (DCI-4A) was then analyzed and its effect on a selected engine was studied. FTIR spectrum analysis was also carried on the presence of water using the TN-699 oil as an example. In conclusion, conclusions and recommendation are presented – the implementation of new lubricants and additives requires, in each case, a series of laboratory and bench tests and monitoring of tribological processes in the operation of machinery and equipment.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
161--173
Opis fizyczny
Bibliogr. 21 poz., rys., wykr., zdj.
Twórcy
  • Instytut Podstaw Budowy Maszyn, Wydział Samochodów i Maszyn Roboczych Politechniki Warszawaskiej, ul. Narbutta 84, 02-524 Warszawa, karol.bogucki@pw.edu.pl
Bibliografia
  • ASTM D4054-19. 2020. Standard Practice for Evaluation of New Aviation Turbine Fuels and Fuel Additives. ASTM International, West Conshohocken, Pennsylvania.
  • ASTM D7066-04. 2010. Standard Test Method for dimer/trimer of chlorotrifluoroethylene (S-316) Recoverable Oil and Grease and Nonpolar Material by Infrared Determination. ASTM International, West Conshohocken, Pennsylvania.
  • BOBZIN K., KALSCHEUER C., THIEX M. 2021. Understanding the Tribological Behavior of Graded (Cr,Al)N+Mo:S in Fluid-Free Friction Regime. Tribology Letters, 69(162). https://doi.org/10.1007/s11249-021-01536-5
  • DCI-4A, Corrosion Inhibitors. Retrieved from https://www.https://innospec.com/
  • DOKTER A.M., WOUTERSEN S., BAKKER H.J. 2006. Inhomogeneous dynamics in confined water nanodroplets. PNAS, 103(42): 15355-15358. https://doi.org/10.1073/pnas.0603239103
  • FERSI A., AYED Y., LAVISSE B., GERMAIN G. 2024. Characterization of friction behavior under cryogenic conditions: Ti–6Al–4V. Tribology International, 195, Article 109588. https://doi.org/10.1016/j.triboint.2024.109588
  • GOTI E., MURA A., GAUTIER DI CONFIENGO G.M., CASALEGNO V. 2023. The tribological performance of super-hard Ta:C DLC coatings obtained by low-temperature PVD. Ceramics International, 49(24, part A): 40193-40210. https://doi.org/10.1016/j.ceramint.2023.09.355
  • GÓMEZ-BOLÍVAR J., WARBURTON M.P., MUMFORD A.D., MUJICA-ALARCÓN J.F., ANGUILANO L., ONWUKWE U., BARNES J., CHRONOPOULOU M., JU-NAM Y., THORNTON S.F., ROLFE S.A., OJEDA J.J. 2024. Spectroscopic and Microscopic Characterization of Microbial Biofouling on Aircraft Fuel Tanks. Langumuir, 40: 3429-3439. https://doi.org/10.1021/acs.langmuir.3c02803
  • KARUPPASAMY P.M., JUNGMOO H., UIHWAN J., KWANGMIN L., HYUNGYIL L. 2021. Study on tribological characteristics of Zr-based BMG via nanoscratch techniques. Wear, 486-487(204067). https://doi.org/10.1016/j.wear.2021.204067
  • KYUEUN P., YOUNGJIN K., KYUNG J.L. 2019. Analysis of deuterated water contents using FTIR bending motion. Journal of Radioanalytical and Nuclear Chemistry, 322(2): 487-493. https://doi.org/10.1007/s10967-019-06734-z
  • LARSSON E., WESTBROEK R., LECKNER J., JACOBSON S., KASSMAN RUDOLPHI Å. 2021. Grease-lubricated tribological contacts – Influence of graphite, grapheneoxide and reduced graphene oxide as lubricating additives in lithium complex (LiX) – and polypropylene (PP)-thickened greases. Wear, 486-487(204107). https://doi.org/10.1016/j.wear.2021.204107
  • LEKŠE N., ŽGAJNAR GOTVAJN A., ZUPANČIČ M., GRIESSLER BULC T. 2024. Oil-based extraction as an efficient method for the quantification of microplastics in environmental samples. Environmental Sciences Europe, 36(68). https://doi.org/10.1186/s12302-024-00898-6
  • MILER D., ŠKEC S., KATANA B., ŽEŽELJ D. (2019). An Experimental Study of Composite Plain Bearings: The Influence of Clearance on Friction Coefficient and Temperature. Strojniški vestnik – Journal of Mechanical Engineering, 65(10): 547-556. https://doi.org/10.5545/sv-jme.2019.6108
  • NIDZGORSKA A., WITOŚ M., PERCZYŃSKI J., KUŁASZKA A. 2023. Aero-engine as the object of tribological research. Journal of KONBiN, 53(3): 87-127. https://doi.org/10.5604/01.3001.0053.9061
  • NO-91-A258-1:2011. 2011. Materiały pędne i smary – Paliwo do turbinowych silników lotniczych – Metody badań. Ministerstwo Obrony Narodowej.
  • SAE AS5780D. 2018. Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants. SAE International, Warrendale, Pennsylvania.
  • SAE J1899. 2022. Lubricating Oil, Aircraft Piston Engine (Ashless Dispersant). SAE International, Warrendale, Pennsylvania.
  • SAE J1966-202010. 2020. Lubricating Oils, Aircraft Piston Engine (Non-Dispersant Mineral Oil). SAE International, Warrendale, Pennsylvania.
  • SANGUINITO S., CVETIC P., GOODMAN A., KUTCHKO B., NATESAKHAWAT S. 2020. Characterizing pore-scale geochemical alterations in eagle ford and barnett shale from exposure to hydraulic fracturing fluid and CO2/H2O. Energy & Fuels, 35(1): 583–598. https://doi.org/10.1021/acs.energyfuels.0c02496
  • Turbonycoil 699 Technical data sheet. Retrieved from www.nyco-group.com
  • VASYLIEVA A., DOROSHENKO I., VASKIVSKYI Y., CHERNOLEVSKA Y., POGORELOV V. 2018. FTIR study of condensed water structure. Journal of Molecular Structure, 1167: 232-238. https://doi.org/10.1016/j.molstruc.2018.05.002
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ba7a9291-1505-496b-a511-c15998fec324
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.