Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 118, nr 2 | 49--56
Tytuł artykułu

Studying the influence of waste glass and montmorillonite powders on the thermal conductivity and hardness of poly(methyl methacrylate) polymer matrix

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The present study aims to evaluate the effect of montmorillonite nanoclay (MMT) and waste glass powder (WGP) on the hardness and thermal conductivity of PMMA polymer composites. Thus, this study concentrates on the potential use of MMT and WGP as reinforcements, in different concentrations, in PMMA polymer matrix, with the expectation of improving the performance of PMMA polymer composites in various applications. Design/methodology/approach: There is a growing demand for PMMA with increased mechanical properties and thermal stability for applications where inorganic glass would fail. Montmorillonite (MMT) clay and Waste Glass Powder (WGP) have physical and chemical properties compatible with PMMA. Therefore, they could potentially enhance PMMA’s hardness and thermal conductivity. Silicon dioxide in glass silica and MMT and octahedral aluminium hydroxide sheet in MMT can strengthen both covalent and hydrogen bonding architecture in PMMA composite for better mechanical strength and thermal conductivity. Thus, PMMA composites were designed by combining MMT powder and WGP powder in different ratios before being incorporated into the PMMA polymer matrix and tested for hardness and thermal conductivity. Findings: The present study measured Brinell Hardness (HB) and electrical conductivity values of four PMMA composites containing different proportions of MMT and WGP. MMT/WGP filler mix had optimal hardiness (HB number = 74) when glass content was 1% (3MMT1G) or better still (HB number = 63) when an equal mix ratio was used (1MMT1G). PMMA composite with 3MMT1G also had the highest thermal conductivity (0.01899W/m.K-1). However, the higher the glass content, the lower the thermal conductivity of the PMMA composite. Thus, the present study has demonstrated that 3MMT1G filler was the best for enhancing the thermal and mechanical properties of PMMA composite. Research limitations/implications: The results of this study demonstrate the potential of this new composite material for a variety of applications. Further research is needed to explore the full potential of this material and to develop new and improved versions. Practical implications: Reusing waste glass as filler materials in composites requires minimal processing and therefore has lower environmental impacts than synthetic options. Originality/value: Experimental data from the present study has provided new insights into Glass/MMT mix design in PMMA composites. The PMMA composite containing 3MMT1G exhibited the best hardness and thermal conductivity characteristics. Thus, the present study has successfully optimised Glass/MMT mix design for PMMA composite for applications requiring these features.
Wydawca

Rocznik
Strony
49--56
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Technical Institute of Basra, Southern Technical University, Basra, Iraq
autor
  • Technical Institute of Basra, Southern Technical University, Basra, Iraq
autor
  • Department of Physics, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region, Iraq
Bibliografia
  • [1] U. Ali, K.J.B.A. Karim, N.A. Buang, A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA), Polymer Reviews 55/4 (2015) 678-705. DOI: https://doi.org/10.1080/15583724.2015.1031377
  • [2] L. Yuan, Y. Wang, M. Pan, G.L. Rempel, Q. Pan, Synthesis of poly (methyl methacrylate ) nanoparticles via differential microemulsion polymerization, European Polymer Journal 49/1 (2013) 41-48. DOI: https://doi.org/10.1016/j.eurpolymj.2012.10.005
  • [3] M.S. Zafar, Prosthodontic applications of polymethyl methacrylate (PMMA): An update, Polymers 12/10 (2020) 2299. DOI: https://doi.org/10.3390/polym12102299
  • [4] B. Hajduk, H. Bednarski, P. Jarka, H. Janeczek, M. Godzierz, T. Tański, Thermal and optical properties of PMMA films reinforced with Nb 2O 5 nanoparticles, Scientific Reports 11/1 (2021) 22531. DOI: https://doi.org/10.1038/s41598-021-01282-7
  • [5] P. Maji, R.B. Choudhary, M. Majhi, Structural, optical and dielectric properties of ZrO 2 reinforced polymeric nanocomposite films of polymethylmethacrylate (PMMA), Optik 127/11 (2016) 4848-4853. DOI: https://doi.org/10.1016/j.ijleo.2016.02.025
  • [6] F. Ahangaran, A.H. Navarchian, F. Picchioni, Material encapsulation in poly(methyl methacrylate) shell: A review, Journal of Applied Polymer Science 136/41 (2019) 48039. DOI: https://doi.org/10.1002/app.48039
  • [7] R.Q. Frazer, R.T. Byron, P.B. Osborne, K.P. West, PMMA: An Essential Material in Medicine and Dentistry, Journal of Long-term Effects of Medical Implants 15/6 (2005) 629-639. DOI: https://doi.org/10.1615/jlongtermeffmedimplants.v15.i6.60
  • [8] A. Hashim, B. Abbas, Recent Review on Poly-methyl methacrylate (PMMA)-Polystyrene (PS) Blend Doped with Nanoparticles For Modern Applications, Research Journal of Agriculture and Biological Sciences 14/3 (2019) 6-12. DOI: https://doi.org/10.22587/rjabs.2019.14.3.2
  • [9] Y.S. Choi, M.H. Choi, K.H. Wang, S.O. Kim, Y.K. Kim, I.J. Chung, Synthesis of Exfoliated PMMA/Na-MMT Nanocomposites via Soap-Free Emulsion Polymerization, Macromolecules 34/26 (2001) 8978-8985. DOI: https://doi.org/10.1021/ma0106494
  • [10] A. Almansoori, C. Majewski, C. Rodenburg, Nanoclay/Polymer Composite Powders for Use in Laser Sintering Applications: Effects of Nanoclay Plasma Treatment, JOM 69/11 (2017) 2278-2285. DOI: https://doi.org/10.1007/s11837-017-2408-5
  • [11] A. Almansoori, R. Seabright, C. Majewski, C. Rodenburg, Feasibility of Plasma Treated Clay in Clay/Polymer Nanocomposites Powders for use Laser Sintering (LS), IOP Conference Series: Materials Science and Engineering 195/1 ( 2017) 012003. DOI: https://doi.org/10.1088/1757-899X/195/1/012003
  • [12] C. Zhou, D. Tong, W. Yu, Smectite Nanomaterials: Preparation, Properties, and Functional Applications, in: A. Wang, W. Wang (eds), Micro and Nano Technologies, Nanomaterials from Clay Minerals, Elsevier, Amsterdam, Oxford, Cambridge, MA, 2019, 335-364. DOI: https://doi.org/10.1016/B978-0-12-814533-3.00007-7
  • [13] Z. Mohammed, A. Tcherbi-Narteh, S. Jeelani, Effect of graphene nanoplatelets and montmorillonite nanoclay on mechanical and thermal properties of polimer nanocomposites and carbon fiber reinforced composites, SN Applied Sciences 2/12 (2020) 1959. DOI: https://doi.org/10.1007/s42452-020-03780-1
  • [14] A. Almansoori, K.J. Abrams, A.D. Ghali Al-Rubaye, C. Majewski, C. Rodenburg, Novel plasma treatment for preparation of laser sintered nanocomposite parts, Additive Manufacturing 25 (2019) 297-306. DOI: https://doi.org/10.1016/j.addma.2018.11.016
  • [15] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Mechanical properties of nylon 6-clay hybrid, Journal of Materials Research 8/5 (1993) 1185-1189. DOI: https://doi.org/10.1557/JMR.1993.1185
  • [16] L. Alimi, K. Chaoui, S. Boukhezar, N. Sassane, H. Mohamed, T.G. Temam, Structure and mechanical properties of PMMA/GF/Perlon composite for orthopedic prostheses, MaterialsToday: Proceedings 31/S1 (2020) S162-S167. DOI: https://doi.org/10.1016/j.matpr.2020.07.085
  • [17] W. Jo, S.K. Park, D.K. Kim, Mechanical properties of nano-MMT reinforced polymer composite and polimer concrete, Construction and Building Materials 22/1 (2008) 14-20. DOI: https://doi.org/10.1016/j.conbuildmat.2007.02.009
  • [18] C. GunaSingh, S. Soundararajan, K. Palanivelu, Studies on Mechanical, Thermal properties and Characterization of Nanocomposites of Nylon-6 - Thermoplastics Poly Urethane Rubber [TPUR] blend, IOSR Journal of Applied Chemistry 4/1 (2013) 65-75. DOI: https://doi.org/10.9790/5736-0416575
  • [19] G. Diaconu, M. Paulis, J.R. Leiza, Towards the synthesis of high solids content waterborne poly(methyl methacrylate-co-butyl acrylate)/montmorillonite nanocomposites, Polymer 49/10 (2008) 2444-2454. DOI: https://doi.org/10.1016/j.polymer.2008.03.038
  • [20] M.L. Chan, K.T. Lau, T.T. Wong, M.P. Ho, D. Hui, Mechanism of reinforcement in a nanoclay/polimer composite, Composites Part B: Engineering 42/6 (2011) 1708-1712. DOI: https://doi.org/10.1016/j.compositesb.2011.03.011
  • [21] K. Majeed, A. Ahmed, M.S. Abu Bakar, T.M. Indra Mahlia, N. Saba, A. Hassan, M. Jawaid, M. Hussain, J. Iqbal, Z. Ali, Mechanical and Thermal Properties of Montmorillonite-Reinforced Polypropylene/Rice Husk Hybrid Nanocomposites, Polymers 11/10 (2019) 1557. DOI: https://doi.org/10.3390/polym11101557
  • [22] P. Tang, Z. Zhang, C. Guo, S. Zeng, P. Chen, Y. Xu, W. Nie, Y. Zhou, Layered Montmorillonite/3D Carbon Nanotube Networks for Epoxy Composites with Enhanced Mechanical Strength and Thermal Properties, ACS Applied Nano Materials 5/6 (2022) 8343-8352. DOI: https://doi.org/10.1021/acsanm.2c01404
  • [23] M.A. Jothi Rajan, T. Mathavan, A. Ramasubbu, A. Thaddeus, V. Fragrance Latha, T.S. Vivekanandam, S. Umapathy, Thermal Properties of PMMA/Montmorillonite Clay Nanocomposites, Journal of Nanoscience and Nanotechnology 6/12 (2006) 3993-3996. DOI: https://doi.org/10.1166/jnn.2006.657
  • [24] S.A.M. Nabirqudri, A.S. Roy, M.V.N.A. Prasad, Electrical and mechanical properties of free-standing PMMA-MMT clay composites, Journal of Materials Research 29/24 (2014) 2957-2964. DOI: https://doi.org/10.1557/jmr.2014.301
  • [25] M. F. Ashby, D.R.H. Jones, Engineering Materials 1: An Introduction to Properties, Applications, and Design, Fourth Edition, Butterworth-Heinemann, Oxford, 2012. DOI: https://doi.org/10.1016/C2009-0-64288-4
  • [26] G.G. Gutiérrez, Oxydation of Clay Nanoreinforced Polyolefins, PhD Thesis, Paris Institute of Technology, Paris, 2010.
  • [27] J. Jang, S. Han, Mechanical properties of glass-fibre mat/PMMA functionally gradient composite, Composites Part A: Applied Science and Manufacturing 30/9 (1999) 1045-1053. DOI: https://doi.org/10.1016/S1359-835X(99)00021-4
  • [28] Z.M. Elimat, A.M. Zihlif, M. Avella, Thermal and optical properties of poly (methyl methacrylate)/calcium carbonate nanocomposite, Journal of Experimental Nanoscience 3/4 (2008) 259-269. DOI: https://doi.org/10.1080/17458080802603715
  • [29] W.A. Alkaron, S.F. Hamad, M.M. Sabri, Studying the Fabrication and Characterization of Polymer Composites Reinforced with Waste Eggshell Powder, Advances in Polymer Technology 2023 (2023) 7640478. DOI: https://doi.org/10.1155/2023/7640478
  • [30] D. Boulerba, A. Zoukel, Poly(methyl methacrylate)/SiO 2 nanocomposites: Effects of the molecular interaction strength on thermal properties, Polymers and Polymer Composites 29/9S (2021) S49-S56. DOI: https://doi.org/10.1177/0967391120985710
  • [31] G. Chladek, J. Żmudzki, K. Basa, A. Pater, C. Krawczyk, W. Pakieła, Effect of silica filler on properties of PMMA resin, Archives of Materials Science and Engineering 71/2 (2015) 63-72.
  • [32] S.K. Al-jumaili, W.A. Alkaron, M.Y. Atshan, Mechanical, thermal, and morphological properties of low-density polyethylene nanocomposites reinforced with montmorillonite: Fabrication and characterizations, Cogent Engineering 10/1 (2023) 2204550. DOI: https://doi.org/10.1080/23311916.2023.2204550
  • [33] R.R. Zarr, A history of testing heat insulators at the national institute of standards and technology, ASHRAE Transactions 107/2 (2001) 661-671.
  • [34] S. Sukenaga, T. Endo, T. Nishi, H. Yamada, K. Ohara, T. Wakihara, K. Inoue, S. Kawanishi, H. Ohta, H. Shibata, Thermal Conductivity of Sodium Silicate Glasses and Melts: Contribution of Diffusive and Propagative Vibration Modes, Frontiers in Materials 8 (2021) 753746. DOI: https://doi.org/10.3389/fmats.2021.753746
  • [35] M.J. Assael, S. Botsios, K. Gialou, I.N. Metaxa, Thermal Conductivity of Polymethyl Methacrylate (PMMA) and Borosilicate Crown Glass BK7, International Journal of Thermophysics 26/5 (2005) 1595-1605. DOI: https://doi.org/10.1007/s10765-005-8106-5
  • [36] S. Rudtsch, U. Hammerschmidt, Intercomparison of measurements of the thermophysical properties of polymethyl methacrylate, International Journal of Thermophysics 25/5 (2004)1475-1482. DOI: https://doi.org/10.1007/s10765-004-5752-y
  • [37] R. Almanza, M.C. Lozano, Mechanical and thermal tests of a bentonite clay for use as a liner for solar ponds, Solar Energy 45/4 (1990) 241-245. DOI: https://doi.org/10.1016/0038-092X(90)90092-Q
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ba76e0fa-51c0-4a02-a9dd-c6d391b6f5f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.