Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 41, no. 2 | 391--401
Tytuł artykułu

Modeling of insulin secretion and insulin mass balance during hemodialysis in patients with and without type 2 diabetes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: The secretion, distribution, and elimination of insulin in response to a bolus of glucose injected during regular hemodialysis was modeled to quantify the intra-dialytic mass balance of glucose and insulin in patients without (D0) and with type 2 diabetes (D1). Methods: A two-compartment regional blood flow model with shared compartments and dynamics for glucose, insulin and c-peptide was used to identify parameters of insulin and c-peptide co-secretion, first- and second-pass hepatic insulin extraction, as well as insulin-independent and insulin-dependent glucose utilization. Experimental data from a previous study obtained in 21 D0 and 14 D1 were used to identify kinetic model parameters and the fractions of glucose and insulin removed by dialysis. Results: Modeled gains for insulin secretion (ß1 = 0.015 vs. 0.084 L/min, ß2 = 0.004 vs. 0.666 L) were lower in D1, resulting in a lower total insulin secretion (Mi = 6.40 vs. 38.0 nmol). Hepatic insulin extraction was high (Eihep = 0.558 vs. 0.638) and only slightly smaller in D1. The fraction of insulin removed by dialysis (Fid = 0.07 vs. 0.05) was small and comparable between D1 and D0. Modeled gains for insulin-dependent glucose uptake (γ = 0.38 vs. 1.34 L2/nmol/min) were lower whereas those for insulin-independent glucose uptake (λ = 0.14 vs. 0.067 L/min) were higher in D1. The fraction of glucose removed by dialysis (Fgd = 0.31 vs. 0.28) was higher in D1. Conclusion: Apart from expected differences in modeled secretion and glucose utilization in patients with and without diabetes an intravenous bolus of glucose causes only small differences in overall glucose and insulin balance during a typical hemodialysis treatment.
Wydawca

Rocznik
Strony
391--401
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Otto Loewi Research Center, Div. of Physiology, Medical University of Graz, Room MC1.E.05.008, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria, daniel.schneditz@medunigraz.at
  • Dept. of Nephrology, Dialysis and Internal Diseases, Medical University of Warsaw, ul. Banacha 1a, 02-097 Warsaw, Poland, lniemczyk@wum.edu.pl
  • Dept. of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland, sniemczyk@wim.mil.pl
Bibliografia
  • [1] Palumbo P, Ditlevsen S, Bertuzzi A, De Gaetano A. Mathematical modeling of the glucose-insulin system: a review. Math Biosci 2013;244:69–81. https://doi.org/10.1016/j.mbs.2013.05.006.
  • [2] Yarragudi R, Gessl A, Vychytil A. New-onset diabetes mellitus in peritoneal dialysis and hemodialysis patients: frequency, risk factors, and prognosis-a review. Ther Apher Dial 2019;23:497–506. https://doi.org/10.1111/1744-9987.12800.
  • [3] Ritz E, Rychlík I, Locatelli F, Halimi S. End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions. Am J Kidney Dis 1999;34:795–808. https://doi.org/10.1016/S0272-6386(99)70035-1.
  • [4] Iyengar R, Franzese J, Gianchandani R. Inpatient glycemic management in the setting of renal insufficiency/failure/dialysis. Curr Diab Rep 2018;18:75. https://doi.org/10.1007/s11892-018-1044-y.
  • [5] Schneditz D, Hafner-Giessauf H, Holzer H, Thomaseth K. Intracorporeal glucose disposal during hemodialysis after a standardized glucose load. ASAIO J 2010;56:204–9. https://doi.org/10.1097/MAT.0b013e3181ce1c9b.
  • [6] Niemczyk L, Schneditz D, Wojtecka A, Szamotulska K, Smoszna J, Niemczyk S. Glucose tolerance in patients with and without type 2 diabetes mellitus during hemodialysis. Diabetes Res Clin Pr 2021;173:108694. https://doi.org/10.1016/j.diabres.2021.108694.
  • [7] Roth A, Dornuf F, Klein O, Schneditz D, Hafner-Gießauf H, Mäntele W. Infrared spectroscopy in hemodialysis: reagentfree monitoring of patient detoxification by infrared spectroscopy. Anal Bioanal Chem 2012;403:391–9. https://doi.org/10.1007/s00216-012-5880-3.
  • [8] DeFronzo RA, Alvestrand A, Smith D, Hendler R, Hendler E, Wahren J. Insulin resistance in uremia. J Clin Invest 1981;67:563–8. https://doi.org/10.1172/JCI110067.
  • [9] Oshida Y, Sato Y, Shiraishi S, Sakamoto N. Studies on glucose intolerance in chronic renal failure: estimation of insulin sensitivity before and after initiation of hemodialysis. Clin Nephrol 1987;28:35–8. https://pubmed.ncbi.nlm.nih.gov/3304745/.
  • [10] Mak RH, DeFronzo RA. Glucose and insulin metabolism in uremia. Nephron 1992;61:377–82. https://doi.org/10.1159/000186953.
  • [11] Abe M, Kaizu K, Matsumoto K. Plasma insulin is removed by hemodialysis: evaluation of the relation between plasma insulin and glucose by using a dialysate with or without glucose. Ther Apher Dial 2007;11:280–7. https://doi.org/10.1111/j.1744-9987.2007.00491.x.
  • [12] Jorgensen MB, Idorn T, Knop FK, Holst JJ, Hornum M, Feldt-Rasmussen B. Clearance of glucoregulatory peptide hormones during haemodialysis and haemodiafiltration in non-diabetic end-stage renal disease patients. Nephrol Dial Transplant 2015;30:513–20. https://doi.org/10.1093/ndt/gfu327.
  • [13] Knopp JL, Holder-Pearson L, Chase JG. Insulin units and conversion factors: a story of truth, boots, and faster halftruths. J Diabetes Sci Technol 2019;13:597–600. https://doi.org/10.1177/1932296818805074.
  • [14] Singh B, Saxena A. Surrogate markers of insulin resistance: A review.World J Diabetes 2010;1:36–47. https://doi.org/10.4239/wjd.v1.i2.36.
  • [15] Schneditz D, Van Stone JC, Daugirdas JT. A regional blood circulation alternative to in-series two compartment urea kinetic modeling. ASAIO J 1993;39:M573–7. https://www.ncbi.nlm.nih.gov/pubmed/8268602.
  • [16] Schneditz D, Galach M, Thomaseth K,Waniewski J. A regional blood flow model for glucose and insulin kinetics during hemodialysis. ASAIO J 2013;13:627–35. https://doi.org/10.1097/MAT.0000436714.72752.13.
  • [17] Steele R, Wall JS, de Bodo RC, Altszuler N. Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am J Physiol 1956;187:15–24. https://doi.org/10.1152/ajplegacy.1956.187.1.15.
  • [18] Mari A, Zafian PT, Achanfuo-Yeboah J, Camacho RC. Relationship between glucose volume of distribution and the extracellular space: a multiple tracer study. Metabolism 2011;60:1627–33. https://doi.org/10.1016/j.metabol.2011.03.017.
  • [19] Caumo A, Simeoni M, Cobelli C. Glucose modelling. In: Modelling methodology for physiology and Medicine, edited by Carson ECobelli C. San Diego, CA: Academic Press, 2001; 337-72.
  • [20] Mari A, Stojanovska L, Proietto J, Thorburn AW. A circulatory model for calculating non-steady-state glucose fluxes. Validation and comparison with compartmental models. Comput Meth Programs Biomed 2003;71:269–81. https://doi. org/10.1016/S0169-2607(02)00097-4.
  • [21] Toffollo GM, Cobelli C. Insulin modelling. In: Modelling Methodology for Physiology and Medinine, edited by Carson ECobelli C. San Diego, CA: Academic Press, 2001.
  • [22] van der Sande F, van de Wal-Visscher E, Stuard S, Moissl U, Kooman J. Using bioimpedance spectroscopy to assess volume status in dialysis patients. Blood Purif 2020;49:178–84. https://doi.org/10.1159/000504079.
  • [23] Moissl UM,Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas 2006;27:921–33. https://doi.org/10.1088/0967-3334/27/9/012.
  • [24] Eaton RP, Allen RC, Schade DS. Hepatic removal of insulin in normal man: dose response to endogenous insulin secretion. J Clin Endocrinol Metab 1983;56:1294–300. https://doi.org/10.1210/jcem-56-6-1294.
  • [25] Polonsky KS, Rubenstein AH. Current approaches to measurement of insulin secretion. Diabetes Metab Rev 1986;2:315–29. https://doi.org/10.1002/dmr.5610020306.
  • [26] Polonsky KS, Given BD, Hirsch L, Shapiro ET, Tillil H, Beebe C, et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest 1988;81:435–41. https://doi.org/10.1172/JCI113338.
  • [27] Saccomani MP, D’Angio’ L, Audoly S, Cobelli C. A priori identifiability of physiological parametric models. In: Modelling Methodology for Physiology and Medicine, edited by Carson ECobelli C. San Diego, CA: Academic Press, 2001.
  • [28] Cobelli C, Toffolo GM, Man CD, Campioni M, Denti P, Caumo A, et al. Assessment of beta-cell function in humans, simultaneously with insulin sensitivity and hepatic extraction, from intravenous and oral glucose tests. Am J Physiol Endocrinol Metab 2007;293:E1–E15. https://doi.org/10.1152/ajpendo.00421.2006.
  • [29] Eaton RP, Allen RC, Schade DS, Erickson KM, Standefer J. Prehepatic insulin production in man: kinetic analysis using peripheral connecting peptide behavior. J Clin Endocrinol Metab 1980;51:520–8. https://doi.org/10.1210/jcem-51-3-520.
  • [30] Toffolo G, De Grandi F, Cobelli C. Estimation of b-cell sensitivity from intravenous glucose tolerance test C-peptide data: knowledge of the kinetics avoids errors in modeling the secretion. Diabetes 1995;44:845–54. https://doi.org/10.2337/diab.44.7.845.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ba1127fa-d81f-4ba8-8453-ff01fadc40ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.