Czasopismo
2019
|
Vol. 67, no. 6
|
1525--1533
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The time-reversal imaging method has become a standard technique for seismic source location using both acoustic and elastic wave equations. Although there are many studies on the determination of the relevant parameter for visualization of the time-reversal method, little has been done so far to investigate the accuracy of seismic source location depending on parameters such as the geometry of the seismic network or underestimation of the velocity model. This paper investigates the importance of the accuracy of seismic source location using the time-reversal imaging method of input variables such as seismic network geometry and the assumed geological model. For efficient visualization of seismic wave propagation and interference, peak-to-average power ratio was used. Identification of the importance of variables used in seismic source location was obtained using the Morris elementary effect method, which is a global sensitivity analysis method.
Czasopismo
Rocznik
Tom
Strony
1525--1533
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
- AGH - University of Science and Technology, Kraków, Poland, franczyk@geol.agh.edu.pl
Bibliografia
- 1. Anderson BE, Griffa M, Ulrich TJ, Johnson PA (2011) Time reversal reconstruction of finite sized sources in elastic media. J Acoust Soc Am 130(4):EL219–EL225.
- 2. Artman B, Podladtchikov I, Witten B (2010) Source location using time-reverse imaging. Geophys Prospect 58(5):861–873. https://doi.org/10.1111/j.1365-2478.2010.00911
- 3. Baysal E, Kosloff D, Sherwood JWC (1983) Reverse time migration. Geophysics 48(11):1514–1524. https://doi.org/10.1190/1.1441434
- 4. Blomgren P, Papanicolaou G, Zhao H (2002) Super-resolution in time-reversal acoustics. J Acoust Soc Am 111(1):230–248. https://doi.org/10.1121/1.1421342
- 5. Campolongo F, Braddock RD (1999) The use of graph theory in the sensitivity analysis of the model output: a second order screening method. Rel Eng Syst Saf 64(1):1–12
- 6. Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sensitivity analysis of large models. Environ Modell Softw 22:1509–1518
- 7. Campolongo F, Kleijnen J, Andres T (2000) Screening methods. In: Saltelli A, Chan K, Scott EM (eds) Sensitivity analysis. Wiley, Chichester, pp 65–80
- 8. Cerjan C, Kosloff D, Kosloff R, Reshef M (1985) A non-reflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics 50(4):705–708. https://doi.org/10.1190/1.1441945
- 9. Cropp R, Braddock R (2002) The new Morris method: an efficient second-order screening method. Reliab Eng Syst Safe 78(1):77–83
- 10. Debski W (2015) Using meta-information of a posteriori Bayesian solutions of the hypocentre location task for improving accuracy of location error estimation. Geophys J Int 201(3):1399–1408. https://doi.org/10.1093/gji/ggv083
- 11. Douma J, Snieder R (2015) Focusing of elastic waves for microseismic imaging. Geophys J Int 200(1):390–401
- 12. Dresen L, Ruter H (2013) Seismic coal exploration: in-stream seismic. Elsevier, Amsterdam
- 13. Fichtner A, Bunge H-P, Igel H (2006) The adjoint method in seismology I. Theory Phys Earth Planet Int 157(1–2):86–104. https://doi.org/10.1016/j.pepi.2006.03.016
- 14. Fink M (1992) Time reversal of ultrasonic field—part I: basic principles. IEEE Trans Ultrason Ferroelectr Freq Control 39(5):555–566. https://doi.org/10.1109/58.156174
- 15. Fink M (1997) Time reversed acoustics. Phys Today 50(3):34–40. https://doi.org/10.1063/1.881692
- 16. Fink M, Prada C, Wu F, Cassereau D (1989) Self-focusing in inhomogeneous media with time reversal acoustic mirrors. IEEE Ultras Symp Proc 1(2):681–686. https://doi.org/10.1109/ULTSYM.1989.67072
- 17. Franczyk A, Leśniak A, Gwiżdż D (2017) Acta Geophys 65:299. https://doi.org/10.1007/s11600-017-0022-0
- 18. Frey HC, Patil SR (2002) Identification and review of sensitivity analysis methods. Risk Anal 22(3):553–578
- 19. Gajewski D, Tessmer E (2005) Reverse modelling for seismic event characterization. Geophys J Int 163(1):276–284. https://doi.org/10.1111/j.1365-246X.2005.02732.x
- 20. Hu LZ, McMechan GA (1988) Elastic finite difference modelling and imaging for earthquake sources. Geophys J Int 95(2):303–313. https://doi.org/10.1111/j.1365-246X.1988.tb00469.x
- 21. Jakeman AJ, Letcher RA, Norton JP (2006) Ten iterative steps in development and evaluation of environmental models. Environ Modell Soft 21:602–614
- 22. Kawakatsu H, Montagner J-P (2008) Time-reversal seismic source imaging and moment-tensor inversion. Geophys J Int 175(2):686–688. https://doi.org/10.1111/j.1365-246X.2008.03926.x
- 23. Larmat C, Guyer RA, Johnson PA (2010) Time-reversal methods in geophysics. Phys Today 63(8):31–35. https://doi.org/10.1063/1.3480073
- 24. Larmat C, Montagner J-P, Fink M, Capdeville Y, Tourin A, Clévédé E (2006) Time-reversal imaging of seismic sources and application to the great Sumatra earthquake. Geophys Res Lett 33(19):L19312. https://doi.org/10.1029/2006GL026336
- 25. Lu R (2008) Time reversed acoustics and applications to earthquake location and Salt Dome Flank imaging, Ph.D. thesis at Massachusetts Institute of Technology
- 26. Martin KJ, Wiley R, Marfurt KJ (2006) Marmoousi2: an elastic upgrade for Marmousi. Lead Edge 25(2):156–166. https://doi.org/10.1190/1.2172306
- 27. McMechan G (1983) Migration by extrapolation of time-dependent boundary values. Geophys Prospect 31(3):413–420. https://doi.org/10.1111/j.1365-2478.1983.tb01060.x
- 28. Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33:161–174
- 29. Nakata N, Beroza GC (2016) Reverse time migration for microseismic sources using the geometric mean as an imaging condition. Geophysics 81(2):KS51–KS60
- 30. Parvulescu A, Clay CS (1965) Reproducibility of signal transmission in the ocean. Radio Electron Eng 29(4):223–228. https://doi.org/10.1049/ree.1965.0047
- 31. Ratto M, Young PC, Romanowicz R, Pappenberger F, Saltelli A, Pagano A (2007) Uncertainty, sensitivity analysis and the role of data based mechanistic modeling in hydrology. Hyrdol Earth Syst Sci 11(4):1249–1266
- 32. Saenger EH (2011) Time reverse characterization of sources in heterogeneous media. NDT E Int 44(8):751–759. https://doi.org/10.1016/j.ndteint.2011.07.011
- 33. Saltelli A, Chan K, Scott EM (eds) (2000) Sensitivity analysis. Wiley, Chichester
- 34. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, Chichester
- 35. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice. Wiley, New York
- 36. Steiner B, Saenger EH (2010) Comparison of 2D and 3D time reverse modelling for tremor source localization. SEG Tech Program Expand Abstr 2010:2171–2175
- 37. Steiner B, Saenger EH (2012) Comparison of 2D and 3D time-reverse imaging—a numerical case study. Comp Geosci 46:174–182. https://doi.org/10.1016/j.cageo.2011.12.005
- 38. Steiner B, Saenger EH, Schmalholz SM (2008) Time reverse modelling of low-frequency microtremors: application to hydrocarbon reservoir localization. Geophys Res Lett 35(3):L03307. https://doi.org/10.1029/2007GL032097
- 39. Tarantola A (1988) Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation. Pure Appl Geophys 128(1):365–399. https://doi.org/10.1007/BF01772605
- 40. Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4):889–901. https://doi.org/10.1190/1.1442147
- 41. Willis ME, Lu R, Burns DR, Toksoz MN, Campman X, de Hoop M (2006) A novel application of time reversed acoustics: salt dome flank imaging using walk away VSP surveys. Geophysics 71(2):A7–A11. https://doi.org/10.1190/1.2187711
- 42. Versteeg R (1994) The Marmousi experience: velocity model determination on a synthetic complex data set. Lead Edge 13:927–936. https://doi.org/10.1190/1.1437051
- 43. Wang H, Li M, Shang X (2016) Current developments on micro-seismic data processing. J Nat Gas Sci Eng 32:521–537. https://doi.org/10.1016/j.jngse.2016.02.058
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b9f8fb26-b2f9-463f-97d5-48254f9eddf0