Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 47, nr 4 | 979--988
Tytuł artykułu

Havliček-Tietze configurations in various projective planes

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A. Lewandowski and H. Makowiecka proved in 1979 that existence of the Havliček–Tietze configuration (shortly H - T) in the desarguesian projective plane is equivalent to existence in the associated field, a root of polynomial x2 + x + 1, different from 1. We show that such a configuration exists in every projective plane over Galois field GF(p2) for p ≠ 3. As it has been demonstrated, in a projective plane over arbitrary field F, each hexagon contained in H - T, satisfies the Pappus–Pascal axiom, even if F is noncommutative. Moreover, such a hexagon either is pascalian or has exactly one pair of opposite sides intersecting at a point collinear with two points not belonging to these sides. In particular, all such hexagons are pascalian iff char F = 2. For the (noncommutative) field of quaternions, we have determined the set of all roots of the mentioned polynomial. Every H - T is the special Pappus configuration, in which three main diagonals of the hexagon are concurrent.
Wydawca

Rocznik
Strony
979--988
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
  • Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland, jjakob@matman.uwm.edu.pl
autor
  • Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland, danuta.kacperek@gmail.com
Bibliografia
  • [1] B. Grünbaum, Configurations of Points and Lines, AMS, Providence, Rhode Island, 2009.
  • [2] P. Dembowski, Finite Geometries, Springer–Verlag, Berlin–Heidelberg–New York, 1968.
  • [3] K. Havliček, J. Tietze, Zur Geometrie der endlichen Ebene der Ordnung n = 4, Czechoslovak Math. J. 21(96) (1971), 157–164.
  • [4] T. Y. Lam, A First Course in Noncommutative Rings, Springer–Verlag, New York, Inc., 1991.
  • [5] S. Lang, Algebra, Addison–Wesley Publishing Company, 1970.
  • [6] A. Lewandowski, H. Makowiecka Some remarks on Havliček–Tietze configuration, Časopis pro pestováni matematiky 104 (1979), 180–184.
  • [7] A. Lewandowski, H. Makowiecka A geometrical characterization of the projective plane of order 4, Časopis pro pĕstováni matematiky 104 (1979), 180–184.
  • [8] C. R. Videla On the constructible numbers, Proc. Amer. Math. Soc. 127 (1999), 851–860.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b97215bd-7582-4acf-96b4-bf8116866e19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.