Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | R. 88, nr 1 | 46--50
Tytuł artykułu

A Review of Shunting Effect in Resistance Spot Welding

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Efekt bocznikowania prądu podczas zgrzewania rezystancyjnego punktowego – przegląd zagadnienia
Języki publikacji
EN
Abstrakty
EN
Studies on shunting effect in resistance spot welding (RSW) have not been widely performed and limited researches were devoted to some aspects of it. Shunting effect in RSW occurs when the electrical current passes through the preceded spot welds in the case of multi-spot welding. The amount of this current depends mostly on weld spacing, and to some extent, on the number and size of previous spot welds. The phenomenon causes some changes in the quality of shunted weld, such as nugget diameter decrease with consecutive reduction of mechanical strength due to changes in electrical current distribution and temperature distribution. Recently some efforts have been made to develop equations for determine the relationship between the input welding parameters and the quality of spot welds. However, the problem needs deeper research and analysis. The paper reviews different approaches performed for simulation and analysis of shunting in RSW.
PL
Badania efektu bocznikowania prądu przy punktowym zgrzewaniu rezystancyjnym (RSW) nie były dotąd szeroko prowadzone i niewiele badań było niektórym jego aspektom. Zjawisko bocznikowania w trakcie RSW pojawia się w sytuacji przepływu prądu elektrycznego przez poprzedzające zgrzeiny w przypadku zgrzewania wieloseryjnego. Wielkość prądu bocznikowania zależy głównie odległości pomiędzy zgrzeinami i w pewnej mierze od ilości i wymiarów poprzedzających zgrzein. Zjawisko to powoduje różnicę jakości bocznikowanej zgrzeiny, poprzez zmniejszenie średnicy jej jądra zgrzeiny, co skutkuje obniżeniem wytrzymałości mechanicznej. Zmiany te są skutkiem zmian rozkładu prądu zgrzewania i temperatury. Ostatnio podjęto starania dla opracowania równań opisujących zależność pomiędzy parametrami wejściowymi zgrzewania z bocznikowaniem prądu a jakością zgrzein. Zagadnienie to wymaga jednak głębszych badań i analiz. Niniejsze opracowanie stanowi przegląd prac o różnym podejściu do symulacji i analizy RSW z efektem bocznikowania prądu.
Wydawca

Rocznik
Strony
46--50
Opis fizyczny
Bibliogr. 27 poz., il.
Twórcy
  • Department of Welding Engineering, Warsaw University of Technology, Poland, mehdijafari@ut.ac.ir
  • Department of Mechanical Engineering, University of Tehran, Iran
autor
  • Department of Welding Engineering, Warsaw University of Technology, Poland
autor
  • Department of Mechanical Engineering, University of Tehran, Iran
Bibliografia
  • [1] Zhang, H., Senkara, J. (2012), „Resistance Welding: Fundamentals and Applications - 2nd Edition”, Chapters 1-7, CRC Press, UK.
  • [2] Li, Y. B., Wang , B., Shen, Q., Lou, M., Zhang, H. (2013), „Shunting effect in resistance spot welding steels — part 2: theoretical analysis”, Welding Journal 92, 231s-238s.
  • [3] Hard, A. R. (1948), „Preliminary test of spot weld shunting in 24ST Alclad”, Welding Journal 27(6): 491-495.
  • [4] Blair R.H. (1947), „Shunt circuit impedance in spot welding 1/8-, 1/4- and 1/2-in. mild steel”. Welding Journal 27(6), 491-495.
  • [5] Nippes E.F., Savage W.F., Robelotto S.M. (1955), „Measurements of shunting currents in series spot welding 0.036-in. steel”. Welding Journal 34(6), 618s-624s.
  • [6] Johnson I.W. (1960), „Spot welding of carbon steel”. Welding Journal 39(1) 89s-96s.
  • [7] Howe, P. (1994), „Spot weld spacing effect on weld button size”, Sheet Metal Welding Conference VI, Paper C03, AWS Detroit Section.
  • [8] Document No. III-1005-93, Section 6., „Procedure for spot welding of uncoated and coated low carbon and high strength steels”, International Institute of Welding.
  • [9] Wang , B., Lou, M., Shen, Q., Li, Y. B., Zhang, H. (2013), „Shunting effect in resistance spot welding steels — part 1: experimental study”, Welding Journal 92 (6), 182s-189s.
  • [10] Wang, X., Li, Y., Meng, G., (2011), „Monitoring of resistance spot weld quality using electrode vibration signals”, Measurement Science and Technology, 1 - 11.
  • [11] Senkara, J., Zhang, H., (2000), „Cracking in spot welding aluminum alloy AA5754”, Welding Journal (79), 194s-201s.
  • [12] Zhang, H., Senkara, J., Wu, X., (2002), „Suppressing cracking in resistance welding AA5754 by mechanical means”, Transactions of the ASME - Journal of Manufacturing Science and Engineering, 124, 79-85.
  • [13] Huh , H., Kang, W.J. (1997), „Electro-thermal analysis of electrode resistance spot welding process by a 3-D finite element method”, Journal of Materials Processing Technology 63, 672–677.
  • [14] Archer, G. (1960), „Calculations for Temperature Response in Spot Welds”. Welding Journal, 39, 327s-330s.
  • [15] Greenwood, J.A. (1961), „Temperature in spot welding”, British Welding Journal 8 (6), 316–322.
  • [16] Tsai, C.L., Jammal, O.A., Papritan, J.C., Dickinson, D.W. (1992), „Analysis and development of a real time control methodology in resistance spot welding”, Welding Journal 70 (12), 339s–351s.
  • [17] Loulou, T., Masson, P., Rogeon, P. (2006), “Thermal characterization of resistance spot welding”, Numerical Heat Transfer Part B: Fundamentals 49 (6), 559–584.
  • [18] Okuda T. (1973), „Spot welding of thick plates. Part I: The law of thermal similarity”. Japan Welding Soc. 21(9)
  • [19] Nied A. (1984), „The finite element modeling of resistance spot welding process”, Welding Journal 63 (4), 123–132.
  • [20] Gould, J. E. (1987), „An examination of nugget development during spot welding, using both experimental and analytical techniques”, Welding Journal, 66(2)1s-10s.
  • [21] Zhang,W. (2003), “Design and implementation of software for resistance welding process simulations”, Journal of Material and Manufacture 112 (5), 556–564.
  • [22] Chang, H. S. (1990), „A study on the shunt effect in resistance spot welding”. Welding Journal 69(8): 308-s to 317-s.
  • [23] Tsai, C. L., Dai, W. L., Dickinson, D. W., and Papritan, J. C. (1991). „Analysis and development of a real-time control methodology in resistance spot welding”. Welding Journal 70(12): 339-s to 351-s.
  • [24] Ma, N., Murakawa, H. (2010), “Numerical and experimental study on nugget formation in resistance spot welding for three pieces of high strength steel sheets”, Journal of Materials Processing Technology (210), 2045–2052.
  • [25] Hou, Z., Kim, I., Wang, Y., Li, C., Chen, C. (2007), „Finite element analysis for the mechanical features of resistance spot welding process”, Journal of Materials Processing Technology (185), 160–165.
  • [26] Hamedi, M., Eisazadeh, H., Esmailzadeh, M. (2010), „Numerical simulation of tensile strength of upset welded joints with experimental verification”, Material & Design (31), 2296–2304.
  • [27] Browne, D. J., Chandler, H. W., Evans, J. T., James, P. S., Wen, J., and Newton, C. J. (1995). „Computer simulation of resistance spot welding in aluminum (Part 2)”. Welding Journal 74(12): 417-s to 422-s.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b95ecb57-4266-47d6-a299-e5f6870b1bf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.