Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 25, No. 1 | 37--40
Tytuł artykułu

Ag₈SnSe₆ argyrodite synthesis and optical properties

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Ag₈SnSe₆ argyrodite compound was synthesized by the direct melting of the elementary Ag, Sn and Se high purity grade stoichiometric mixture in a sealed silica ampoule. The prepared polycrystalline material was characterized by the X-ray diffraction (XRD), visible (VIS) and near-infrared (NIR) reflection and photoluminescence (PL) spectroscopy. XRD showed that the Ag₈SnSe₆ crystallizes in orthorhombic structure, Pmn2₁ space group with lattice parameters: ɑ = 7.89052(6) Ǻ, b = 7.78976(6) Ǻ, c = 11.02717(8) Ǻ. Photo-luminescence spectra of the Ag₈SnSe₆ polycrystalline wafer show two bands at 1675 nm and 1460 nm. Absorption edge position estimated from optical reflectance spectra is located in the 14131540 nm wavelength range.
Wydawca

Rocznik
Strony
37--40
Opis fizyczny
Bibliogr. 32 poz., wykr.
Twórcy
autor
  • Lviv Polytechnic National University, Physics Department, S. Bandera 12, 79013 Lviv, Ukraine, Semkiv.Igor.5@gmail.com
autor
  • Lviv Polytechnic National University, Physics Department, S. Bandera 12, 79013 Lviv, Ukraine
  • Warsaw University of Technology, Faculty of Physics, Semiconductor Division, Koszykowa 75, 00-662 Warszawa, Poland
autor
  • Lviv Polytechnic National University, Physics Department, S. Bandera 12, 79013 Lviv, Ukraine
Bibliografia
  • [1] M. Lundstrom, Moore’s law forever? Science 299 (5604) (2003) 210-211.
  • [2] Nanoelectronics and Information Technology, in: R. Waser (Ed.), Wiley-VCH, Weinheim, 2003.
  • [3] M.-J. Lee, C. B. Lee, D. Lee, S.R. Lee, M. Chang, J. H. Hui, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures, Nat. Mater. 10 (2011) 625-630.
  • [4] R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges, Adv. Mater. 21 (2009) 2632-2663.
  • [5] M. N. Kozicki, M. Park, M. Mitkova, Nanoscale memory elements based on solid-state electrolytes, IEEE Trans. Nanotechnol. 4 (2005) 331-338.
  • [6] X. Zhang, C.-L. Zhang, S. Lin, H. Lu, Y. Pei, S. Jia, Thermoelectric properties of n-type Nb-doped Ag8SnSe6, J. Appl. Phys. 119 (2016) 135101-1-135101-6.
  • [7] L. Li, Y. Liu, J. Dai, A. Hong, M. Zeng, Z. Yan, J. Xu, D. Zhang, D. Shan, S. Liu, Z. Ren, J.-M. Liu, High thermoelectric performance of superionic argyrodite compound Ag8SnSe6, J. Mater. Chem. C 4 (2016) 5806-5813.
  • [8] W. Li, S. Lin, B. Ge, J. Yang, W. Zhang, Y. Pei, Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6, Adv. Sci. 3 (11) (2016), 1600196-1-1600196-7.
  • [9] W. F. Kuhs, R. Nitsche, K. Schuenemann, The argyrodites - a new family of the tetrahedrally close-packed srtuctures, Mater. Res. Bull. 14 (1979) 241-248.
  • [10] M. V. Chekaylo, V. O. Ukrainets, G. A. Il’chuk, Yu. P. Pavlovsky, N. A. Ukrainets, Differential thermal analysis of Ag-Ge-Se, Ge-Se charge materials in the process of their heating and Ag8GeSe6, GeSe2 compound synthesis, J. Non-Cryst. Solids 358 (2012) 321-327.
  • [11] M. V. Moroz, M. V. Prokhorenko, Measurement of the thermodynamic properties of saturated solid solutions of compounds in the Ag-Sn-Se system by the EMF method, Russ. J. Phys. Chem. A 89 (2015) 1325-1329.
  • [12] S. M. Bagheri, S. Z. Imamaliyeva, L. F. Mashadiyeva, M. B. Babanly, Phase equilibria in the Ag8SnS6–Ag8SnSe6 system, Int. J. Adv. Sci. Tech. Res. 4 (2) (2014) 291-296.
  • [13] S. K. Kovach, A. P. Kokhan, Yu. V. Voroshilov, Electrochemical behavior and Ag8GeS6, Ag8GeSe6, Ukr. Khim. Zh. 59 (1993) 395–398 (in Russian).
  • [14] I. S. Osipishin, N. I. Bursko, B. I. Gasii, I. D. Zhezhrich, Sov. Phys. Semicond. 6 (1972) 974 (transl. from Fiz. Tekh. Poluprov 6 (1972) 1121-1123).
  • [15] S. N. Starostenko, Deposited Doc, VINITI 3167 (1981) 288–291 (in Russian).
  • [16] O. Gorochov, Les composes Ag8MX6 (M = Si, Ge, Sn and X = S, Se, Te), Bull. Soc. Chim. Fr. 6 (1968) 2263-2275.
  • [17] A. K. Ivanov-Shits, I. V. Murin, Solid State Ionics, vol. 1, Saint-Petersburg University Publ., Saint-Petersburg, 2000.
  • [18] S. Hull, P. Berastegui, A. Grippa, Ag+ diffusion within the rock-salt structured superionic conductor Ag4Sn3S8, J. Phys.: Condens. Matter 17 (2005) 1067-1084.
  • [19] L. D. Gulay, I. D. Oleksceyk, O. V. Parrasyuk, Crystal structure of β-Ag8SnSe6, J. Alloys Compd. 339 (2002) 113-117.
  • [20] R. Bendorius, A. Iržikevičius, A. Kindurys, E. V. Tsvetkova, The absorption spectra of Ag8MIVSe6 and Ag8GeXVI6 compounds, Phys. Stat. Sol. (a) 28 (1975) K125-K127.
  • [21] A. Kindurys, A. Shileika, Investigation of the absorption edge of the compounds at phase trancitions, Inst. Phys. Conf. Ser. 35 (1977) 67-72.
  • [22] I. V. Semkiv, B. A. Lukiyanets, H. A. Ilchuk, R. Yu. Petrus, A. I. Kashuba, M. V. Chekaylo, Energy structure of βi-phase of Ag8SnSe6 crystal, J. Nano-Electron. Phys. 8 (1) (2016), 01011-1-01011-5.
  • [23] S. V. Syrotyuk, I. V. Semkiv, H. A. Ilchuk, V. M. Shved, Condens. Matter Phys. 19 (4) (2016), 43703-1-43703-6.
  • [24] I. V. Semkiv, H. A. Ilchuk, A. I. Kashuba, R. Yu. Petrus, V. V. Kusnezh, Lattice dynamic of Ag8SnSe6 crystal, J. Nano-Electron. Phys. 8 (3) (2016), 03006-1-03006-6.
  • [25] Z. M. Aliyeva, S. M. Bagheri, Z. S. Aliev, I. J. Alverdiyev, Y. A. Yusibov, M. B. Babanly, The phase equilibria in the Ag2S–Ag8GeS6-Ag8SnS6 system, J. Alloys Compd. 611 (2014) 395-400.
  • [26] http://www.ill.eu/sites/fullprof/.
  • [27] M. Pawlowski, P. Zabierowski, R. Bacewicz, H. Marko, N. Barreau, Photoluminescence as a tool for investigations of the junction region in Cu(In,Ga)Se2-based solar cells, Thin Solid Films 519 (2011) 7328-7331.
  • [28] D. Carre, R. Ollitrault-Fichet, Structure de Ag8GeSe6β, J. Flahaut. Acta Crystallogr. B 36 (1980) 245-249.
  • [29] J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, New Jersey, 1971.
  • [30] T. Schmidt, K. Lischka, W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors, Phys. Rev. B 45 (1992) 8989-8994.
  • [31] O. Madelung, Semiconductors: Data Handbook, Springer Science & Business Media, Berlin, 2012.
  • [32] Susanne Siebentritt, Wide-gap Chalcopyrites, vol. 1, Springer, Berlin, 2006.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b93d43a4-5b2d-48b2-b90a-a723da17edf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.