Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 54, nr 1 | 377--409
Tytuł artykułu

Comparison of modified ADM and classical finite difference method for some third-order and fifth-order KdV equations

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The KdV equation, which appears as an asymptotic model in physical systems ranging from water waves to plasma physics, has been studied. In this paper, we are concerned with dispersive nonlinear KdV equations by using two reliable methods: Shehu Adomian decomposition method (STADM) and the classical finite difference method for solving three numerical experiments. STADM is constructed by combining Shehu’s transform and Adomian decomposition method, and the nonlinear terms can be easily handled using Adomian’s polynomials. The Shehu transform is used to accelerate the convergence of the solution series in most cases and to overcome the deficiency that is mainly caused by unsatisfied conditions in other analytical techniques. We compare the approximate and numerical results with the exact solution for the two numerical experiments. The third numerical experiment does not have an exact solution and we compare profiles from the two methods vs the space domain at some values of time. This study provides us with information about which of the two methods are effective based on the numerical experiment chosen. Knowledge acquired will enable us to construct methods for other related partial differential equations such as stochastic Korteweg-de Vries (KdV), KdV-Burgers, and fractional KdV equations.
Wydawca

Rocznik
Strony
377--409
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Department of Mathematics and Applied Mathematics, Nelson Mandela University, Gqeberha 6031, South Africa, Rao.Appadu@mandela.ac.za
  • Department of Mathematics and Applied Mathematics, Nelson Mandela University, Gqeberha 6031, South Africa, s223540455@mandela.ac.za
Bibliografia
  • [1] N. J. Zabusky and M. D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965), no. 6, 240, DOI: https://doi.org/10.1103/PhysRevLett.15.240.
  • [2] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 39 (1895), no. 240, 422-443, DOI: https://doi.org/10.1080/14786449508620739.
  • [3] P. G. Drazin, Solitons: An Introduction, Vol. 2, Cambridge University Press, Cambridge, 1989.
  • [4] D. Dutykh, M. Chhay, and F. Fedele, Geometric numerical schemes for the KdV equation, Comput. Math. Math. Phys. 53 (2013), no. 2, 221-236, DOI: https://doi.org/10.7868/S0044466913020075.
  • [5] H. Ahmad, T. A. Khan, P. S. Stanimirovic, and I. Ahmad, Modified variational iteration technique for the numerical solution of fifth-order KdV-type equations, J. Appl. Comput. Mech. 6 (2020), 1220-1227, DOI: https://doi.org/10.22055/jacm.2020.33305.2197.
  • [6] P. Karunakar and S. Chakraverty, Differential quadrature method for solving fifth-order KdV equations, in: S. Chakraverty, P. Biswas (eds.), Recent Trends in Wave Mechanics and Vibrations, Springer, Singapore, 2020, pp. 361-369.
  • [7] W. K. Zahra, W. A. Ouf, and M. S. El-Azab, B-spline soliton solution of the fifth-order KdV type equations, AIP Conference Proceedings 1558 (2013), no. 1, 568–572, DOI: https://doi.org/10.1063/1.4825554.
  • [8] R. I. Nuruddeen, L. Muhammad, A. M. Nass, and T. A. Sulaiman, A review of the integral transforms-based decomposition methods and their applications in solving nonlinear PDEs, Palest. J. Math. 7 (2018), no. 1, 262–280.
  • [9] R. M. Jena and S. Chakraverty, Analytical solution of Bagley-Torvik equations using Sumudu transformation method, SN Appl. Sci. 1 (2019), no. 3, 246, DOI: https://doi.org/10.1007/s42452-019-0259-0.
  • [10] R. M. Jena and S. Chakraverty, Solving time-fractional Navier-Stokes equations using homotopy perturbation Elzaki transform, SN Appl. Sci. 1 (2019), no. 1, 16, DOI: https://doi.org/10.1007/s42452-018-0016-9.
  • [11] R. M. Jena and S. Chakraverty, Q-homotopy analysis aboodh transform method based solution of proportional delay time-fractional partial differential equations, J. Interdiscip. Math. 22 (2019), no. 6, 931–950, DOI: https://doi.org/10.1080/09720502.2019.1694742.
  • [12] A. R. Seadawy, R. I. Nuruddeen, K. S. Aboodh, and Y. F. Zakariya, On the exponential solutions to three extracts from extended fifth-order KdV equation, J. King Saud Univ. Sci. 32 (2020), no. 1, 765-769, DOI: https://doi.org/10.1016/j.jksus.2019.01.007.
  • [13] C. Park, R. I. Nuruddeen, K. K. Ali, L. Muhammad, M. S. Osman, and D. Baleanu, Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg-de Vries equations, Adv. Differ. Equ. 2020 (2020), 627, DOI: https://doi.org/10.1186/s13662-020-03087-w.
  • [14] R. I. Nuruddeen, Multiple soliton solutions for the ( +3 1) conformable space-time fractional modified Korteweg-de-vries equations, J. Ocean Eng. Sci. 3 (2018), no. 1, 11–18, DOI: https://doi.org/10.1016/j.joes.2017.11.004.
  • [15] A. A. Aderogba and A. R. Appadu, Classical and multisymplectic schemes for linearized KdV equation: numerical results and dispersion analysis, Fluids 6 (2021), no. 6, 214, DOI: https://doi.org/10.3390/fluids6060214.
  • [16] A. R. Appadu and A. S. Kelil, On semi-analytical solutions for linearized dispersive KdV equation, Mathematics 8 (2020), no. 10, 1769, DOI: https://doi.org/10.3390/math8101769.
  • [17] M. H. Eljaily and M. E. Tarig, Homotopy perturbation transform method for solving korteweg-devries (KdV) equation, Pure Appl. Math. J. 4 (2015), no. 6, 264–268, DOI: https://doi.org/10.11648/j.pamj.20150406.17.
  • [18] A. Goswami, J. Singh, and D. Kumar, Numerical simulation of fifth-order KdV equation occurring in magneto-acoustic waves, Ain Shams Eng. J. 9 (2018), no. 4, 2265–2273, DOI: https://doi.org/10.1016/j.asej.2017.03.004.
  • [19] S. Chakraverty, N. Mahato, P. Karunakar, and T. D. Rao, Advanced Numerical and Semi Analytical Methods for Differential Equations, John Wiley & Sons, Inc., Hoboken, New Jersey, United states, 2019.
  • [20] R. I. Nuruddeen, Elzaki decomposition method and its applications in solving linear and nonlinear Schrodinger equations, Sohag J. Math. 4 (2017), no. 2, 31–35, DOI: http://doi.org/10.18576/sjm/040201.
  • [21] O. E. Ige, R. A. Oderinu, and T. M. Elzaki, Adomian polynomial and Elzaki transform method of solving fifth-order Korteweg-De Vries equation, CJMS 8 (2019), no. 2, 103–119, DOI: http://doi.org/10.22080/cjms.2018.14486.1346.
  • [22] S. Maitama and W. Zhao, New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations, Int. J. Anal. Appl. 17 (2019), no. 2, 167–190, DOI: https://doi.org/10.28924/2291-8639-17-2019-167.
  • [23] A. Prakash, V. Verma, D. Kumar, and J. Singh, Analytic study for fractional coupled Burger’s equations via Sumudu transform method, Nonlinear Eng. 7 (2018), no. 4, 323–332, DOI: https://doi.org/10.1515/nleng-2017-0090.
  • [24] J. S. Duan, Convenient analytic recurrence algorithms for the Adomian polynomials, Appl. Math. Comput. 217 (2011), no. 13, 6337–6348, DOI: https://doi.org/10.1016/j.amc.2011.01.007.
  • [25] J. S. Duan, New recurrence algorithms for the nonclassic Adomian polynomials, Appl. Math. Comput. 62 (2011), no. 8, 2961–2977, DOI: https://doi.org/10.1016/j.camwa.2011.07.074.
  • [26] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Vol. 60, Springer Science & Business Media, Berlin/Heidelberg, Germany, 2013.
  • [27] G. Adomian, A review of decomposition method and some recent results for nonlinear equation, Math. Comput. Model. 13 (1990), no. 7, 17–43.
  • [28] G. Adomian and R. Rach, Noise terms in decomposition solution series, Comp. Math. Appl. 24 (1992), no. 11, 61–64, DOI: https://doi.org/10.1016/0898-1221(92)90031-C.
  • [29] A. M. Wazwaz, Partial Differential Equations: Methods and Applications, Balkema Publishers, Lisse, the Netherlands, 2002.
  • [30] A. M. Wazwaz, Necessary conditions for the appearance of noise terms in decomposition solution series, J. Math. Anal. Appl. 81 (1997), no. 2–3, 265–274, DOI: https://doi.org/10.1016/S0096-3003(95)00327-4.
  • [31] T. Ogawa, Travelling wave solutions to a perturbed Korteweg-de Vries equation, Hiroshima Math. J. 24 (1994), no. 2, 401–422, DOI: https://doi.org/10.32917/hmj/1206128032.
  • [32] A. Atangana, On the singular perturbations for fractional differential equation, Sci World J. 2014 (2014), 752371, DOI: https://doi.org/10.1155/2014/752371.
  • [33] E. U. Agom and F. O. Ogunfiditimi, Exact solution of nonlinear Klein-Gordon equations with quadratic nonlinearity by modified Adomian decomposition method, J. Math. Comput. Sci. 8 (2018), no. 4, 484–493, DOI: https://doi.org/10.28919/jmcs/3749.
  • [34] R. K. Bhattacharyya and R. K. Bera, Application of Adomian method on the solution of the elastic wave propagation in elastic bars of finite length with randomly and linearly varying Young’s modulus, Appl. Math. Lett. 17 (2004), no. 6, 703–709, DOI: https://doi.org/10.1016/S0893-9659(04)90108-5.
  • [35] N. Duan and K. Sun, Stochastic power system simulation using the Adomian decomposition method, preprint arXiv: http://arXiv.org/abs/arXiv:1710.02415, (2017).
  • [36] D. Kaya and I. E. Inan, A convergence analysis of the ADM and an application, Appl. Math. Comput. 161 (2005), no. 3, 1015–1025, DOI: https://doi.org/10.1016/j.amc.2003.12.063.
  • [37] B. S. Kashkari, Adomian decomposition method for solving a Generalized Korteweg-De Vries equation with boundary conditions, J. King Abdulaziz Univ. Sci. 23 (2011), no. 2, 79–90, DOI: https://doi.org/10.4197/Sci.23-2.6.
  • [38] A. M. Wazwaz, Solitons and periodic solutions for the fifth-order KdV equation, Appl. Math. Lett. 19 (2006), no. 11, 1162–1167, DOI: https://doi.org/10.1016/j.aml.2005.07.014.
  • [39] T. R. Taha and M. I. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations III, Numerical, Korteweg-de Vries equation, J. Comput. Phys. 55 (1984), no. 2, 231–253, DOI: https://doi.org/10.1016/0021-9991(84)90004-4.
  • [40] C. Grossmann, H. G. Roos, and M. Stynes, Numerical Treatment of Partial Differential Equations, Vol. 154, Springer-Verlag, Berlin Heidelberg, 2007.
  • [41] A. R. Appadu, M. Chapwanya, and O. A. Jejeniwa, Some optimised schemes for 1D Korteweg-de-Vries equation, Prog. Comput. Fluid Dyn. 17 (2017), no. 4, 250–266, DOI: https://doi.org/10.1504/PCFD.2017.085177.
  • [42] D. W. McLaughlin and J. A. Strain, Computing the weak limit of KdV, Commun. Pure Appl. Math. 47 (1994), no. 10, 1319–1364, DOI: https://doi.org/10.1002/cpa.3160471003.
  • [43] A. R. Appadu and S. N. Nguetchue, The technique of MIEELDLD as a measure of the shock-capturing property of numerical methods for hyperbolic conservation laws, Prog. Comput. Fluid Dyn. 15 (2015), no. 4, 247–264, DOI: https://doi.org/10.1504/PCFD.2015.070441.
  • [44] A. R. Appadu, Investigating the shock-capturing properties of some composite numerical schemes for the 1-D linear advection equation, Int. J. Comput. Appl. Technol. 43 (2012), no. 2, 79–92, DOI: https://doi.org/10.1504/IJCAT.2012.046038.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b8df6388-9feb-4e70-a74a-eab346cda7b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.