Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 26 | 75--80
Tytuł artykułu

Optimized lattice rule and adaptive approach for multidimensional integrals with applications

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
EN
Abstrakty
EN
In this work we make a comparison between optimized lattice and adaptive stochastic approaches for multidimensional integrals with different dimensions. Some of the integrals has applications in environmental safety and control theory.
Wydawca

Rocznik
Tom
Strony
75--80
Opis fizyczny
Bibliogr. 12 poz., wz., tab.
Twórcy
  • Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, vtodorov@math.bas.bg
  • Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
autor
  • Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, ivdimov@bas.bg
  • Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, stefka@parallel.bas.bg
  • Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, stoyan@math.bas.bg
Bibliografia
  • 1. Berntsen J., Espelid T.O., Genz A. (1991) An adaptive algorithm for the approximate calculation of multiple integrals, ACM Trans. Math. Softw. 17: 437–451.
  • 2. Dimov I. (2008) Monte Carlo Methods for Applied Scientists, New Jersey, London, Singapore, World Scientific, 291 p., ISBN-10 981-02-2329-3.
  • 3. Dimov I., Karaivanova A., Georgieva R., Ivanovska S. (2003) Parallel Importance Separation and Adaptive Monte Carlo Algorithms for Multiple Integrals, Springer Lecture Notes in Computer Science, 2542, 99–107.
  • 4. Dimov I., Georgieva R. (2010) Monte Carlo Algorithms for Evaluating Sobol’ Sensitivity Indices. Math. Comput. Simul. 81(3): 506–514.
  • 5. A. Genz, Testing multidimensional integration routines. Tools, Methods and Languages for Scientific and Engineering Computation (1984) 81–94.
  • 6. Hua L.K. and Wang Y. (1981) Applications of Number Theory to Numerical analysis.
  • 7. Pencheva, V., I. Georgiev, and A. Asenov. “Evaluation of passenger waiting time in public transport by using the Monte Carlo method.” AIP Conference Proceedings. Vol. 2321. No. 1. AIP Publishing LLC, 2021.
  • 8. Raeva, E., & Georgiev, I. R. (2018, October). Fourier approximation for modeling limit of insurance liability. In AIP Conference Proceedings (Vol. 2025, No. 1, p. 030006). AIP Publishing LLC.
  • 9. I.F. Sharygin (1963) A lower estimate for the error of quadrature formulas for certain classes of functions, Zh. Vychisl. Mat. i Mat. Fiz. 3, 370–376.
  • 10. I.H. Sloan and P.J. Kachoyan (1987) Lattice methods for multiple integration: Theory, error analysis and examples, SIAM J. Numer. Anal. 24, 116–128.
  • 11. I.H. Sloan and S. Joe, Lattice Methods for Multiple Integration, Lattice methods for multiple Integration, (Oxford University Press 1994).
  • 12. Y. Wang and F. J. Hickernell (2000) An historical overview of lattice point sets, in Monte Carlo and Quasi-Monte Carlo Methods 2000, Proceedings of a Conference held at Hong Kong Baptist University, China.
Uwagi
1. Preface
2. Session: 14th International Workshop on Computational Optimization
3. Communication Papers
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b85257b6-86ff-4e1d-bfac-f1dc69c551d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.