Czasopismo
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
Abstrakty
In this work we make a comparison between optimized lattice and adaptive stochastic approaches for multidimensional integrals with different dimensions. Some of the integrals has applications in environmental safety and control theory.
Rocznik
Tom
Strony
75--80
Opis fizyczny
Bibliogr. 12 poz., wz., tab.
Twórcy
autor
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, vtodorov@math.bas.bg
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
autor
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, ivdimov@bas.bg
autor
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, stefka@parallel.bas.bg
autor
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, stoyan@math.bas.bg
Bibliografia
- 1. Berntsen J., Espelid T.O., Genz A. (1991) An adaptive algorithm for the approximate calculation of multiple integrals, ACM Trans. Math. Softw. 17: 437–451.
- 2. Dimov I. (2008) Monte Carlo Methods for Applied Scientists, New Jersey, London, Singapore, World Scientific, 291 p., ISBN-10 981-02-2329-3.
- 3. Dimov I., Karaivanova A., Georgieva R., Ivanovska S. (2003) Parallel Importance Separation and Adaptive Monte Carlo Algorithms for Multiple Integrals, Springer Lecture Notes in Computer Science, 2542, 99–107.
- 4. Dimov I., Georgieva R. (2010) Monte Carlo Algorithms for Evaluating Sobol’ Sensitivity Indices. Math. Comput. Simul. 81(3): 506–514.
- 5. A. Genz, Testing multidimensional integration routines. Tools, Methods and Languages for Scientific and Engineering Computation (1984) 81–94.
- 6. Hua L.K. and Wang Y. (1981) Applications of Number Theory to Numerical analysis.
- 7. Pencheva, V., I. Georgiev, and A. Asenov. “Evaluation of passenger waiting time in public transport by using the Monte Carlo method.” AIP Conference Proceedings. Vol. 2321. No. 1. AIP Publishing LLC, 2021.
- 8. Raeva, E., & Georgiev, I. R. (2018, October). Fourier approximation for modeling limit of insurance liability. In AIP Conference Proceedings (Vol. 2025, No. 1, p. 030006). AIP Publishing LLC.
- 9. I.F. Sharygin (1963) A lower estimate for the error of quadrature formulas for certain classes of functions, Zh. Vychisl. Mat. i Mat. Fiz. 3, 370–376.
- 10. I.H. Sloan and P.J. Kachoyan (1987) Lattice methods for multiple integration: Theory, error analysis and examples, SIAM J. Numer. Anal. 24, 116–128.
- 11. I.H. Sloan and S. Joe, Lattice Methods for Multiple Integration, Lattice methods for multiple Integration, (Oxford University Press 1994).
- 12. Y. Wang and F. J. Hickernell (2000) An historical overview of lattice point sets, in Monte Carlo and Quasi-Monte Carlo Methods 2000, Proceedings of a Conference held at Hong Kong Baptist University, China.
Uwagi
1. Preface
2. Session: 14th International Workshop on Computational Optimization
3. Communication Papers
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-b85257b6-86ff-4e1d-bfac-f1dc69c551d6