Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 47, nr 4 | 784--790
Tytuł artykułu

On derivations of operator algebras with involution

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to prove the following result. Let X be a complex Hilbert space, let L(X) be an algebra of all bounded linear operators on X and let A(X) (…) L(X) be a standard operator algebra, which is closed under the adjoint operation. Suppose there exists a linear mapping D : A(X) → L(X) satisfying the relation 2D(AA*A) = D(AA*)A + AA*D(A) + D(A)A*A + AD(A*A) for all A (…) A(X). In this case, D is of the form D(A) = [A,B] for all A (…) A(X) and some fixed B (…) L(X), which means that D is a derivation.
Wydawca

Rocznik
Strony
784--790
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Department of Mathematics and Computer Science, FNM University of Maribor Koroška Cesta 160 2000 Maribor, Slovenia, nejc.sirovnik@uni-mb.si
autor
  • Institute of Mathematics, Physics and Mechanics Department in Maribor Gosposvetska 84 2000 Maribor, Slovenia, joso.vukman@uni-mb.si
Bibliografia
  • [1] K. I. Beidar, M. Brešar, M. A. Chebotar, W. S. Martindale 3rd, On Herstein’s Lie map Conjectures II, J. Algebra 238 (2001), 239–264.
  • [2] M. Brešar, J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321–322.
  • [3] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003–1006.
  • [4] M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218–228.
  • [5] M. Brešar, J. Vukman, Jordan (θ,φ)-derivations, Glas. Mat. 28 (1991), 83–88.
  • [6] P. R. Chernoff, Representations, automorphisms and derivations of some Operator Algebras, J. Funct. Anal. 2 (1973), 275–289.
  • [7] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321–324.
  • [8] H. G. Dales, Automatic continuity, Bull. London Math. Soc. 10 (1978), 129–183.
  • [9] I. N. Herstein, Jordan derivations on prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1119.
  • [10] I. Kosi-Ulbl, J. Vukman, On some equations related to derivations in rings, Int. J. Math. Math. Sci. (2005), 2703–2710.
  • [11] I. Kosi-Ulbl, J. Vukman, On derivations in rings with involution, Int. Math. J. 6 (2005), 81–91.
  • [12] I. Kosi-Ulbl, J. Vukman, An identity related to derivations of standard operator algebras and semisimple H*-algebras, Cubo: A Mathematical Journal, 12 (2010), 95-103.
  • [13] L. Molnár, On centralizers of an H*-algebra, Publ. Math. Debrecen 46(1–2) (1995), 89–95.
  • [14] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge University Press, Cambridge, London, New York and Melbourne, 1976.
  • [15] P. Šemrl, Ring derivations on standard operator algebras, J. Funct. Anal. 112 (1993), 318–324.
  • [16] J. Vukman, On automorphisms and derivations of operator algebras, Glas. Mat. 19 (1984), 135–138.
  • [17] J. Vukman, On derivations of algebras with involution, Acta Math. Hungar. 112(3) (2006), 181–186.
  • [18] J. Vukman, On derivations of standard operator algebras and semisimple H*-algebras, Studia Sci. Math. Hungar. 44 (2007), 57–63.
  • [19] J. Vukman, Identities related to derivations and centralizers on standard operator algebras, Taiwanese J. Math. 11 (2007), 255–265.
  • [20] J. Vukman, Some remarks on derivations in semiprime rings and standard operator algebras, Glas. Mat. 46 (2011), 43–48.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b847d6b6-dd12-4f4f-816f-236e5403bab3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.