Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 49, nr 4 |
Tytuł artykułu

Issues in the design and validation of coupled reverberation rooms for testing acoustic insulation of building partitions

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the characteristics of the sound field in two pairs of coupled reverberation rooms, designed following the guidelines and the requirements of ISO 10140-5. The authors discuss the problem of non-requirements to ensure a satisfactory acoustic field in reverberation rooms used to sound insulation measurement at their design stage. They prove that the existing guidelines described in the standards for the geometry and construction of reverberation rooms are insufficient because in many cases they imply the need to install some additional diffusing and absorbing elements at the stage of using the rooms. Such elements, however, are very undesirable as they significantly limit the usable space of the rooms, making it more difficult to assemble samples and distribute sources and measurement points in the measurement space. Keywords: Reverberation chambers; Transmission loss; Acoustic field; Small scale model
Wydawca

Rocznik
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Tadeusz Kościuszko Cracow University of Technology Poland
Bibliografia
  • 1. Duck F.A., Baker A.C., Starritt H.C. (1998), Ultrasound in Medicine, Institute of Physics Publishing, Bristol, Philadeplhia.
  • 2. Eigen M., Tamm K. (1962), Sound absorption in electrolyte solutions as a sequence of chemical reactions, Zeitschrift fuer Elektrochemie, 66(2): 93-121.
  • 3. Eigen M., De Mayer L. (1963), Relaxation methods, [in:] Techniques of Organic Chemistry, Freiss S.L., Lewis E.S., Weissberger A. [Eds.] Interscience Publishers, New York.
  • 4. Hamilton M., Il’inskii Yu., Zabolotskaya E. (1998), Dispersion, [in:] Nonlinear Acoustics, Hamilton M., Blackstock D. [Eds.], Academic Press.
  • 5. Hertzfeld K.F., Litowitz T.A. (1959), Absorption and Dispersion of Ultrasonic Waves, Academic Press, New York.
  • 6. Leble S., Perelomova A. (2018), The Dynamical Projectors Method: Hydro and Electrodynamics, CRC Press.
  • 7. Liebermann L.N. (1948), The origin of sound absorption in water and in sea water, The Journal of the Acoustical Society of America, 20(6): 868-873, doi: 10.1121/1.1906450.
  • 8. Liebermann L.N. (1949), Sound propagation in chemically active media, Physical Review, 76(10): 1520, doi: 10.1103/PhysRev.76.1520.
  • 9. Makarov S., Ochmann M. (1996), Nonlinear and thermoviscous phenomena in acoustics, Part I, Acustica, 82(4): 579-606.
  • 10. Mandelshtam L.I., Leontowich M.A. (1937), To the theory of sound absorption in liquids, Zhurnal Éksperimental’no
  • 11. ˘ı i Teoretichesko˘ı Fiziki, 7(3): 438.
  • 12. Mellen R.H., Simmons V.P., Browning D.G. (1979), Sound absorption in sea water: A third chemical relaxation, The Journal of the Acoustical Society of America, 65(4): 923-925, doi: 10.1121/1.382595.
  • 13. Molevich N.E. (2001), Amplification of vortex and temperature waves in the process of induced scattering of sound in thermodynamically nonequilibrium media, High Temperature, 39(6): 884-888, doi: 10.1023/A:1013147207446.
  • 14. Nachman A., Smith J.F., Waag R.C. (1990), An equation for acoustic propagation in inhomogeneous media with relaxation losses, The Journal of the Acoustical Society of America, 88(3): 1584-1595, doi: 10.1121/1.400317.
  • 15. Nyborg W.L. (1978), Physical Mechanisms for Biological Effects of Ultrasound, The Bureau of Radiological Health, Rockville.
  • 16. Osipov A.I., Uvarov A.V. (1992), Kinetic and gasdynamic processes in nonequilibrium molecular physics, Soviet Physics Uspekhi, 35(11): 903, doi: 10.1070/PU1992v035n11ABEH002275.
  • 17. Parker K.J. (1983), Ultrasonic attenuation and absorption in liver tissue, Ultrasound in Medicine & Biology, 9(4): 363-369, doi: 10.1016/0301-5629(83)90089-3.
  • 18. Perelomova A. (2010), Nonlinear generation of non-acoustic modes by low-frequency sound in a vibrationally relaxing gas, Canadian Journal of Physics, 88(4): 293-300, doi: 10.1139/P10-011.
  • 19. Perelomova A. (2013), Hysteresis curves and loops for harmonic and impulse perturbations in some non-equilibrium gases, Central European Journal of Physics, 11(11): 1541-1547, doi: 10.2478/s11534-013-0305-2.
  • 20. Perelomova A. (2015), The nonlinear effects of sound in a liquid with relaxation losses, Canadian Journal of Physics, 93(11): 1391-1396, doi: 10.1139/cjp-2014-0676.
  • 21. Perelomova A. (2019), Excitation of non-wave modes by sound of arbitrary frequency in a chemically reacting gas, Acta Acustica united with Acustica, 105(6): 918-927, doi: 10.3813/AAA.919373.
  • 22. Perelomova A., Pelc-Garska W. (2010), Efficiency of acoustic heating produced in the thermoviscous flow of a fluid with relaxation, Central European Journal of Physics, 8(6): 855-863, doi: 10.2478/s11534-010-1015-y.
  • 23. Pierce A.D. (1981), Acoustics: An Introduction to its Physical Principles and Applications, McGraw-Hill, New York.
  • 24. Pierce A.D., Mast T.D. (2021), Acoustic propagation in a medium with spatially distributed relaxation processes and a possible explanation of a frequency power law attenuation, Journal of Theoretical and Computational Acoustics, 29(2): 2150012, doi: 10.1142/S2591728521500122.
  • 25. Rudenko O.V., Soluyan S.I. (1977), Theoretical Foundations of Nonlinear Acoustics, Plenum, New York.
  • 26. Yeager E., Fisher F.H. (1973), Origin of the low-frequency sound absorption in sea water, The Journal of the Acoustical Society of America, 53(6): 1705-1707, doi: Bonello O. (1981), A New Criterion for the Distribution of Normal Room Modes, Journal of the Audio Engineering Society, 29(9):597-606.
  • 27. Bork I. (2000), A Comparison of Room Simulation Software - The 2nd Round Robin on Room Acoustical Computer Simulation, Acta Acustica united with Acustica, 86(6): 943-956.
  • 28. Bradley D.T., Müller-Trapet M., Adelgren J., Vorländer M. (2014), Effect of boundary diffusers in a reverberation chamber: Standardized diffuse field quantifiers, The Journal of the Acoustical Society of America, 135: 1898-1906, https://doi.org/10.1121/1.4866291.
  • 29. Chazot J.D, Robin O., Guyader, J.L. Atalla N. (2016), Diffuse Acoustic Field Produced in Reverberant Rooms: A Boundary Diffuse Field Index, Acta Acustica united with Acustica, 102(3): 503-316, https://doi.org/10.3813/AAA.918968.
  • 30. Dijckmans A., Vermeir G. (2013), Numerical Investigation of the Repeatability and Reproducibility of Laboratory Sound Insulation Measurements, Acta Acustica united with Acustica, 99(3): 421-432, https://doi.org/10.3813/AAA.918623.
  • 31. Fuchs H.V.. Zha X., Pommerer M. (2000), Qualifying freefield and reverberation rooms for frequencies below 100 Hz, Applied Acoustics, 59(4):302-322, https://doi.org/10.1016/S0003-682X(99)00038-9.
  • 32. ISO 10140-2:2021, Acoustic – Laboratory measurement of sound insulation of building elements – Part 2: measurement of airborne sound insulation.
  • 33. ISO 10140-4:2021, Acoustics – Laboratory measurement of sound insulation of building elements – Part 4: Measurement procedures and requirements.
  • 34. ISO 10140-5:2021, Acoustics – Laboratory measurement of sound insulation of building elements – Part 5: Requirements for test facilities and equipment.
  • 35. ISO 12999-1:2014, Acoustics – Determination and application of measurement uncertainties in building acoustics – Part 1: Sound insulation.
  • 36. ISO 717-1:2020, Acoustics — Rating of sound insulation in buildings and of building elements — Part 1: Airborne sound insulation.
  • 37. Kuttruff H. (2000), Room Acoustics. Fourth edition, Spon Press, London.
  • 38. Mleczko D., Wszołek T. (2019), Effect of Diffusing Elements in a Reverberation Room on the Results of Airborne Sound Insulation Laboratory Measurements, Archives of Acoustics, 44(4):739-746, https://doi.org/10.24425/aoa.2019.129729.
  • 39. Morse P. M., Bolt R. H. (1944), Sound waves in rooms, Reviews of Modern Physics, 16(2): 69-150.
  • 40. Nutter D.B., Leishman T.W., Sommerfeldt S.D., Blotter J.D. (2007), Measurement of sound power and absorption in reverberation chambers using energy density, The Journal of the Acoustical Society of America, 121: 2700-2710, https://doi.org/10.1121/1.2713667.
  • 41. Oliazadeh P., Farshidianfar A., Crocker M. J. (2022), Experimental study and analytical modeling of sound transmission through honeycomb sandwich panels using SEA method, Composite Structures, 280:114927, https://doi.org/10.1016/j.compstruct.2021.114927.
  • 42. Qiaoxi Z. (2022), A case study on the transmission loss suite in the University of Technology Sydney, Proceedings of the Annual Conference of the Australian Acoustical Society, Acoustics 2021, Wollongong.
  • 43. Schmal J., Herrin D., Shaw J., Moritz Ch., Talbot A., Ghaisas N. (2021), Using simulation to predict reverberation room performance: Validation and parameter study, INTER-NOISE and NOISE-CON Congress and Conference Proceedings, InterNoise21, pp. 4903-4912(10), Washington, https://doi.org/10.3397/IN-2021-2879.
  • 44. Szeląg A., Baruch-Mazur K., Brawata K., Przysucha B., Mleczko D. (2021), Validation of a 1:8 Scale Measurement Stand for Testing Airborne Sound Insulation, Sensors, 21(19):6663, https://doi.org/10.3390/s21196663.
  • 45. Uris A., Bravo J.M., Llinares J., Estelles H. (2007), Influence of plastic electrical outlet boxes on sound insulation of gypsum board walls, Building and Environment, 42(2): 722-729, https://doi.org/10.1016/j.buildenv.2005.10.025.
  • 46. Vallis J., Hayne M., Mee D., Devereux R. (2015), Steel A., Improving sound diffusion in a reverberation chamber, Proceedings of Acoustics 2015, Hunter Valley.
  • 47. Yao D., Zhang J., Wang R., Xiao X. (2020), Effects of mounting positions and boundary conditions on the sound transmission loss of panels in a niche, Journal of Zhejiang University – SCIENCE A, 21:129-146, https://doi.org/10.1631/jzus.A1900494.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b8406e7e-026b-4858-8013-3ece875be48d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.