Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Nr 3 | 37--42
Tytuł artykułu

Analiza pracy układu magazynowania energii elektrycznej w kawernach solnych w stanach nieustalonych

Warianty tytułu
EN
Analysis of operation of energy storage system in salt caverns in transient states
Języki publikacji
PL
Abstrakty
PL
W artykule zaprezentowano analizę pracy układu magazynowania energii elektrycznej w kawernach solnych. Technologia ta oparta jest na metodzie magazynowania energii przy pomocy sprężonego powietrza – CAES (ang. Compressed Air Energy Storage), w której czynnikiem roboczym jest gaz ziemny magazynowany w kawernach solnych – CNGES (ang. Compressed Natural Gas Energy Storage). Istotą układu jest pompowanie gazu za pomocą sprężarki zasilanej energią elektryczną z kawerny o niższym ciśnieniu do kawerny o ciśnieniu wyższym a następnie, podczas trybu rozładowania kawern gaz rozpręża się w ekspanderze połączonym z generatorem energii elektrycznej, przechodząc z kawerny o wyższym ciśnieniu do kawerny o ciśnieniu niższym. Została wykonana analiza w stanie ustalonym i w stanach nieustalonych. Jako obiekt rozważań został wykorzystany kawernowy podziemny magazyn gazu Mogilno. Wykonano analizy symulacyjne dla trzech stopni rozprężania gazu w ekspanderze oraz dla sprężania gazu. Uzyskano sprawność magazynowania energii na poziomie 56%.
EN
The paper presents an analysis of the operation of the energy storage system in salt caverns. This technology is based on the method of energy storage using compressed air - CAES (Compressed Air Energy Storage), in which the working medium is natural gas stored in salt caverns - CNGES (Compressed Natural Gas Energy Storage). The essence of the system is the pumping of gas by means of a compressor powered by electricity from the lower pressure cavern to the higher pressure cavern, and then, during the cavern discharge mode, the gas expands in the expander connected to the electricity generator, passing from the higher pressure cavern to the higher pressure cavern. lower pressure caverns. The steady—state and transient analysis was performed. The Mogilno salt cavern underground gas storage facility was used as an object of consideration. Simulation analyzes were performed for three stages of gas expansion in the expander and for gas compression. Energy storage efficiency of 56% was achieved.
Wydawca

Czasopismo
Rocznik
Tom
Strony
37--42
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Al Shaqsi AZ., Sopian K., Al-Hinai A.: Review of energy storage services, applications, limitations, and benefits. Energy Reports 2020, 6, 288—306, doi210.1016/j.egyr.2020.07.028.
  • [2] Aneke M., Wang M.: Energy storage technologies and real life applications — A state of the art review. Appl. , “ Energy 2016, 179, 350—377,doi:lO.1016/j.apenergy.2016.06.097.
  • [3] Burke M.]., Stephens J.C.: Political power and renewable energy futures: A critical review. Energy Res. Soc.Sci. 2018, 35, 78—93, doi:10.1016/j.erss.2017.10.018.
  • [4] Chen H., Cong TN., Yang W., Tan C., Li Y., Ding Y.: Progress in electrical energy storage system: A critical review. Prog. Nat. Set. 2009, 19, 291—312, doi:10.1016/j.pnsc.2008.07.014.
  • [5] Crotogino F., Mohmeyer K.-U., Scharf R.: Huntorf CABS: More than 20 Years of Successfiil Operation. Solut. Min. Res. Inst. Spring Meet. 2001, 351—357.
  • [6] Gielen D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., Gorini, R.: The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 2019, 24, 38—50, doil.1016/j.esr.2019.01.006.
  • [7 ] Guo C., Pan L., Zhang K., Oldenburg C.M., Li C., Li Y.: Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant. Appl. Energy 2016, 181, doi:10.1016/j.apenergy.2016.08.105.
  • [8] International Energy Agency: Renewables 2020. Analysis and forecast to 2025 Report
  • [9] Jafarizadeh H., Soltani M., Nathwani J.: Assessment of the Huntorf compressed air energy storage plant performance under enhanced modifications. Energy ConverS. Manag. 2020, 209, doi:10.1016/j.enconman.2020.112662.
  • [10] Lai C.S., Locatelli G.: Economic and financial appraisal of novel large-scale energy storage technologies. Energy 2021, 214, doi:10.1016/j.energy.2020.118954.
  • [11] Levenda A.M., Behrsin I., Disano F.: Renewable energy for whom? A global systematic review of the environmental justice implications of renewable energy technologies. Energy Res. Soc. Sci. 2021, 71.
  • [12] Liu J .: China’s renewable energy law and policy: A critical review. Renew. Sustain. Energy Rev. 2019, 99doi:10.1016/j.rser.2018.10.007.
  • [13] Maradin D.: Advantages and disadvantages of renewable energy sources utilization. Int. J. Energy ECO"- Policy 2021, 11, 176—183, doi:10.32479/ijeep.l1027. .
  • [l4] Mohtasham J.: Review Article-Renewable Energies. Energy Procedz‘a 2015, 74, 1289—1297, doi:10.1016/j.egypro.2015.07.774.
  • [15] Olabi AG., Onumaegbu C., Wilberforce T., Ramadan M., Abdelkareem M.A., Al — Alami A.H.: Critical review of energy storage systems. Energy 2021, 214, doi:10.1016/j.energy.2020.118987.
  • [16] Ould Amrouche S., Rekioua D., Rekioua T., Bacha S.: Overview of energy storage in renewable Energy systems. Em. J. Hydrogen Energy 2016, 41, 20914—20927, doi:10.1016/j.ijhydene.2016.06.243.
  • [17] Perea-Moreno M.A., Samerón-Manzano E., Perea-Moreno A.J.: Biomass as renewable energy: Worldwide research trends. Sustain. 2019, 11, doi:10.3390/su11030863.
  • [l8] Raju M., Kumar Khaitan S.: Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant. Appl. Energy 2012, 89, 474—481, doi:10.1016/j.apenergy.2011.08.019.
  • [19] Siksnelyte-Butkiene 1., Zavadskas EK, Streimikiene D.: Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: A review. Energies 2020, 13, doi:lO.3390/en13051164.
  • [20] Trahey L., Brushett FR., Balsara NP., Ceder G., Cheng L., Chiang Y.M., Hahn N.T., Ingram B.J., Minteer S.D., Moore J .S. et al: Energy storage emerging: A perspective from the Joint Center for Energy Storage Research. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 12550—12557, doi:10.1073/pnas.1821672l17.
  • [21] Vakulchuk R., Overland l., Scholten D.: Renewable energy and geopolitics: A review. Renew. Sustain. Energy Rev. 2020, 122, doi:10.1016/j.rser.2019.109547.
  • [22] Zhang J.J., Zhou S.G., Li S.Q., Song W.J., Feng Z.P.: Thermodynamic Analysis of Compressed Air Energy Storage System (CAES) Based on Huntorf Case. Journal Eng. Thermophys. 2019, 40, 118—124.
  • [23] Zhou Q., Du D., Lu C., He Q., Liu W.: A review of thermal energy storage in compressed air energy storage system. Energy 2019, 188, doi:10.1016/j.energy.2019.115993.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b80695f7-68c4-481c-add9-ed932bc14c38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.