Warianty tytułu
Języki publikacji
Abstrakty
In this work, a novel perspective is proposed to develop schematics solutions for electro-hydraulic positioning actuators. The basis of the design approach has been established, which includes: a set of possible desired properties of actuators; a series of defined typical positioning methods; variants of schematic structures; a quantitative assessment method for specific properties based on influencing factors; the quantitative relationship between the structure and properties of actuators, as well as the method for overall evaluation of the actuator’s performance based on the total score. The results obtained can serve as the basis for an effective design approach, which allows for reducing the number of iteration cycles while developing new electro-hydraulic positioning actuator schematic solutions.
Czasopismo
Rocznik
Tom
Strony
87--107
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Department of Fluid Mechanics and Mechatronics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
autor
- Department of Fluid Mechanics and Mechatronics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine, uzua@i.ua
Bibliografia
- [1] A.G. Atkins and M. Escudier. A Dictionary of Mechanical Engineering. Oxford Quick Reference. Oxford University Press, 2013. doi: 10.1093/acref/9780199587438.001.0001.
- [2] R. Dindorf and P. Wos. Force and position control of the integrated electro-hydraulic servo-drive. 2019 20th International Carpathian Control Conference (ICCC), pages 1–6, Krakow, Poland, 2019. doi: 10.1109/CarpathianCC.2019.8765986.
- [3] T.A. Minav, L.I.E. Laurila, and J.J. Pyrhönen. Relative position control in an electro-hydraulic forklift. International Review of Automatic Control (IREACO), 6(1):54–61, 2013.
- [4] A. Plöckinger, P. Foschum, R. Scheidl and B. Winkler. Digital hydraulics for an industrial micro-positioning system. Proceedings of the 9th International Fluid Power Conference. Vol. 9, Aachen, Germany, 2014.
- [5] Yaqin Zhang. Study on a new adjustable hydraulic positioning system. 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pages 519–523, Jilin, China, 2011. doi: 10.1109/MEC.2011.6025516.
- [6] T. Minav, J. Heikkinen, T. Schimmel, and M. Pietola. Direct driven hydraulic drive: Effect of oil on efficiency in sub-zero conditions. Energies, 12(2):219, 2019. doi: 10.3390/en12020219.
- [7] L. Wang, G. Gong, H. Yang, X. Yang and D. Hou. The development of a high-speed segment erecting system for shield tunneling machine. IEEE/ASME Transactions on Mechatronics, 18(6):1713–1723, 2013. doi: 10.1109/TMECH.2013.2282873.
- [8] M. Kastrevc, N. Gubeljak, and E. Detiček. Design and tuning of the Lyapunov based nonlinear position control of electrohydraulic servo systems. Facta Universitatis, Series: Mechanical Engineering, 2022.
- [9] R. Dindorf and P. Woś. Sensorless step positioning of hydraulic linear actuator. Technical Transactions, 11:169–174, 2018. doi: 10.4467/2353737XCT.18.171.9427.
- [10] I.H.A. Al-Had, F.M. Mohammed, and J.A.K. Mohammed. Modeling and simulation of electro- hydraulic telescopic elevator system controlled by programmable logic controller. Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), 27(1):71–78, 2022. doi: 10.11591/ijeecs.v27.i1.pp71-78.
- [11] M.A. Novik, V.E. Didovec, and A.O. Bielskjj. Kombinovanij cifrovij privod (Combined digital actuator). Ukraine Patent 128599, September 25th, 2018. (in Ukrainian).
- [12] Zhi-Wei, Y. U., Y. U. Hao, X. U. Ming-Li, and Z. D. Dai. New leg module of hydraulic quadruped robot structure design and performance analysis. Science Technology and Engineering 11, 2011.
- [13] L. Tian, F. Han, M. Li, W. Liu, and H. Yan. Research on the influence of airbag structure on bending performane of soft actuator with pneumatic networks. Manufacturing Automation, 43(9), 2021. doi: 10.3969/j.issn.1009-0134.2021.09.006. (in Chinese).
- [14] D. Chen, L.I. Guorong, M. Zhu, W. Zhang, S. Zhang, and Q. Yin. The influence of crystal structure on performance of piezoelectric ceramic actuators. Journal of Functional Materials Devices, 3(4):20–26, 1997.
- [15] Q. Huang, Z. Liu, Q. Li , H. Quan, and J. Zeng. Influence of collecting pipe structure on external characteristics and wake flow of roto-jet pump. Journal of Harbin Engineering University, 42(3):368–375, 2021. doi: 10.11990/jheu.201909077. (in Chinese).
- [16] M. Huova, M. Linjama, L. Siivonen, T. Deubel, H. Försterling, H, and E. Stamm. Novel fine positioning method for hydraulic drives utilizing on/off-valves. Proceedings of the BATH/ASME 2018 Symposium on Fluid Power and Motion Control. BATH/ASME 2018 Symposium on Fluid Power and Motion Control, Vol. 51968, ASME, 2018. doi: 10.1115/FPMC2018-8891.
- [17] J. Yu, H. Zhan, L. Wang, and Z. Jiao. Research on cylinder position control system with high-speed on-off valve drived by piezoelectric. Journal of Beijing University of Aeronautics and Astronautics, 47:706–714, 2020. doi: 10.13700/j.bh.1001-5965.2020.0345. (in Chinese)
- [18] H. Qiu, and Q. Su. Simulation research of hydraulic stepper drive technology based on highspeed on/off valves and miniature plunger cylinders. Micromachines, 12(4):438, 2021. doi: 10.3390/mi12040438.
- [19] A. Plöckinger, C. Gradl, and R. Scheidl. High accuracy sensorless hydraulic stepping actuator. Proceedings of the 8th Workshop on Digital Fluid Power (DFP 2016), Tampere, Finland. 2016.
- [20] O. Haletskyi, A. Murashchenko, and I. Nochnichenko. Mathematical model of the pneumatic distributor of the position drive. International Scientific and Technical Conference “Hydroaeromechanics in Engineering Practice”, 26:366–368, 2021.
- [21] S. Nayak and M. Rao. Design and development of a flexurally amplified piezoelectric actuator based piezo-hydraulic pump. Materials Today: Proceedings, 46(19):9956–9965, 2021. doi: 10.1016/j.matpr.2021.03.314.
- [22] Q. Zhang, X. Kong, B. Yu, K. Ba, Z. Jin, and Y. Kang. Review and development trend of digital hydraulic technology. Applied Sciences, 10(2):579, 2020. doi: 10.3390/app10020579.
- [23] M. Linjama. Digital fluid power: State of the art. Proceedings of The 12th Scandinavian International Conference on Fluid Power, Tampere, Finland. 2011.
- [24] B. Wang, H. Ji, and R. Chang. Position control with ADRC for a hydrostatic double-cylinder actuator. Actuators, 9(4):112, 2020. doi: 10.3390/act9040112.
- [25] B. Wang, P. Ren, and X. Huang. Backstepping sliding-mode control of piezoelectric single-piston pump-controlled actuator. Actuators, 10(7):154, 2021. doi: 10.3390/act10070154.
- [26] M.P. Nostrani, H. Raduenz, A. Dell’Amico, A.P. Krus, and V.J. De Negri. Multi-chamber actuator using digital pump for position and velocity control applied in aircraft. International Journal of Fluid Power, 24(1):1–28. doi: 10.13052/ijfp1439-9776.2411.
- [27] M.A. Novik and A.M. Lukianov. Bagatopozicijnij povorotnij privod z cifrovim keruvanniam (Multi-position rotary actuator with digital control). Ukraine Patent 101924, October 12, 2015. (in Ukrainian)
- [28] M.A. Novik, V.E. Didovec, and S.V. Givotovskij. Cifrovij privod povorotno-postupalnoi dii (Digital reciprocating actuator). Ukraine Patent 128599, September 25th, 2018. (in Ukrainian)
- [29] V.V. Petrenko, M.A. Novik, and M.V. Ivaschenko. Pnevmogidravlichnij bagatopozicijnij privod z obiemnim gidravlichnim cifrovim dozatorom (Pneumohydraulic multi-position actuator with volumetric hydraulic digital metering). Innovacyi molody v mashinobuduvanni, 2:104-112, 2020. (in Ukrainian)
- [30] O. Galeckij and V. Sharipov. Systema kontroliu pologennia krokovogo privodu na osnovi adaptivnogo klapanu tisku (Stepping actuator position control system based on an adaptive pressure valve). Materialy naukovo-tehnichnoi conferencyi “Progresivna tehnika, tehnologia taingenerna osvita”, XIX (2018). (in Ukrainian)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b7dde967-0f8d-43ec-928b-ab26335e67af