Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 65 (4) | 571--594
Tytuł artykułu

Dinoflagellate cysts and benthic foraminifera from surface sediments of Svalbard fjords and shelves as paleoenvironmental indicators

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the Arctic amplification effect, the Svalbard archipelago is an important area for studying ongoing environmental changes. However, its marine ecosystem is extremely complex. In this study, we analyze modern assemblages of dinoflagellate cysts (dinocysts) and benthic foraminifera from surface sediment samples around Svalbard. We use multivariate statistical analyses to examine relationships between environmental conditions (summer and winter sea surface temperature and salinity, sea-ice cover, etc.) and both microfossil groups to evaluate their use as proxies for reconstructions of the marine environment in the region. Our results show that the most important factor controlling the environment around Svalbard is the Atlantic Water which mostly impacts the western coast, but its influence reaches as far as the eastern coast of Nordaustlandet. However, on a local scale, such factors as the sea-ice cover, the presence of tidewater glaciers, or even the morphology and hydrology of fjords become increasingly important. We found that two dinocyst species, cysts of Polarella glacialis and Echinidinium karaense, can be considered regional winter drift ice indicators. The relationships between environmental parameters and benthic foraminiferal assemblages are much more difficult to interpret. Although statistical analysis shows a correlation of benthic foraminiferal species with various environmental parameters, this correlation might be somewhat coincidental and caused by other factors not analyzed in this study. Nevertheless, the use of two complementary microfossil groups as (paleo)environmental indicators can provide a more comprehensive picture of the environmental conditions.
Wydawca

Czasopismo
Rocznik
Strony
571--594
Opis fizyczny
Bibliogr. 131 poz., fot., map., rys., tab., wykr.
Twórcy
  • University of Minnesota, Department of Earth and Environmental Sciences, College of Science & Engineering, Minneapolis, USA
  • LITTORAL, Ifremer, Concarneau, France
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • 1. Aagaard, K., Foldvik, A., Hillman, S.R., 1987. The West Spitsbergen Current: Disposition and Water Mass Transformation. J. Geophys. Res. 92, 3778-3784.
  • 2. Ahrens, M.J., Graf, G., Altenbach, A.V., 1997. Spatial and temporal distribution patterns of benthic foraminifera in the Northeast Water Polynya. Greenland. J. Marine Syst. 10, 445-465. https://doi.org/10.1016/S0924-7963(96)00052-8
  • 3. Akimova, A., Schauer, U., Danilov, S., Núñez-Riboni, I., 2011. The role of the deep mixing in the Storfjorden shelf water plume. Deep-Sea Res. Pt. I 58, 403-414. https://doi.org/10.1016/j.dsr. 2011.02.001
  • 4. Ambrose, W.G., Caroll, M.L., Greenacre, M., Thorrold, S.R., McMahon, K.W., 2006. Variation in Serripes groenlandicus (Bivalvia) growth in a Norwegian high-Arctic fjord: Evidence for local- and large-scale climatic forcing. Glob. Change Biol. 12, 1595-1607. https://doi.org/10.1111/j.1365-2486.2006.01181.x
  • 5. Balazy, P., Kuklinski, P., 2019. Year-to-year variability of epifaunal assemblages on a mobile hard substrate—Case study from high latitudes. Mar. Ecol. 1-17. https://doi.org/10.1111/maec.12533
  • 6. Bamber, J.L., Krabill, W., Raper, V., Dowdeswell, J.A., 2004. Anomalous recent growth of part of a large Arctic ice cap: Austfonna, Svalbard. Geophys. Res. Lett. 31, 3-6. https://doi.org/10.1029/2004GL019667
  • 7. Barbieri, R., Hohenegger, J., Pugliese, N., 2006. Foraminifera and environmental micropaleontology. Mar. Micropaleontol. 61, 1-3. https://doi.org/10.1016/j.marmicro.2006.06.004
  • 8. Barrientos, N., Lear, C.H., Jakobsson, M., Stranne, C., O’Regan, M., Cronin, T.M., Gukov, A.Y., Coxall, H.K., 2018. Arctic Ocean benthic foraminifera Mg/Ca ratios and global Mg/Ca-temperature calibrations: New constraints at low temperatures. Geochim. Cosmochim. Acta 236, 240-259. https://doi.org/10.1016/j. gca.2018.02.036
  • 9. Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Org. Geochem. 38, 16-27. https://doi.org/10.1016/j. orggeochem.2006.09.013
  • 10. Belt, S.T., Müller, J., 2013. The Arctic sea ice biomarker IP 25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quaternary Sci. Rev. 79, 9-25. https://doi.org/10.1016/j.quascirev.2012.12.001
  • 11. Błaszczyk, M., Jania, J.A., Kolondra, L., 2013. Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century. Polish Polar Res. 34, 327-352. https://doi.org/10.2478/popore
  • 12. Cabedo-Sanz, P., Belt, S.T., Knies, J., Husum, K., 2013. Identification of contrasting seasonal sea ice conditions during the Younger Dryas. Quaternary Sci. Rev. 79, 74-86. https://doi.org/10.1016/j.quascirev.2012.10.028
  • 13. Campbell, J.W., Antoine, D., Armstrong, R., Arrigo, K., Balch, W., Barber, R., Behrenfeld, M., Bidigare, R., Bishop, J., Carr, M.E., Esaias, W., Falkowski, P., Hoepffner, N., Iverson, R., Kiefer, D., Lohrenz, S., Marra, J., Morel, A., Ryan, J., Vedernikov, V., Waters, K., Yentsch, C., Yoder, J., 2002. Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Global Biogeochem. Cy. 16. https://doi.org/10.1029/2001gb001444
  • 14. Carroll, M.L., Denisenko, S.G., Renaud, P.E., Ambrose, W.G., 2008. Benthic infauna of the seasonally ice-covered western Barents Sea: Patterns and relationships to environmental forcing. DeepSea Res. Pt. II 55, 2340-2351. https://doi.org/10.1016/j.dsr2.2008.05.022
  • 15. Comiso, J.C., 2002. A rapidly declining perennial sea ice cover in the Arctic. Geophys. Res. Lett. 29, 2-5. https://doi.org/10.1029/2002GL015650
  • 16. Cottier, F.R., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., Griffiths, C., 2005. Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. J. Geophys. Res.-Oceans 110, 1-18. https://doi.org/10.1029/2004JC002757
  • 17. Curry, J.A., Schramm, J.L., Ebert, E.E. , 1995. Sea Ice-Albedo Climate Feedback Mechanism. J. Clim. 8, 240-247. https://doi.org/10.1175/1520-0442(1995)0080240:SIACFM2.0.CO;2
  • 18. Dahlke, S., Hughes, N.E., Wagner, P.M., Gerland, S., Wawrzyniak, T., Ivanov, B., Maturilli, M., 2020. The observed recent surface air temperature development across Svalbard and concurring footprints in local sea ice cover. Int. J. Climatol. 40, 5246-5265. https://doi.org/10.1002/joc.6517
  • 19. Dale, B., 2009. Eutrophication signals in the sedimentary record of dinoflagellate cysts in coastal waters. J. Sea Res. 61, 103-113. https://doi.org/10.1016/j.seares.2008.06.007
  • 20. Dale, B., 1996. Dinoflagellate cyst ecology: modeling and geological applications. In: Jansonius, J., McGregor, D.C. (Eds.), Palynology: Principles and Applications. AASP Foundation, 1249-1275.
  • 21. Dale, B., 1983. Dinoflagellate resting cysts: ‘benthic plankton’. In: Fryxell, G.A. (Ed.), Survival Strategies of the Algae. Cambridge University Press, New York, 69-136.
  • 22. Dale, B., 1976. Cyst formation, sedimentation, and preservation: Factors affecting dinoflagellate assemblages in recent sediments from Trondheimsfjord. Norway. Rev. Palaeobot. Palynol. 22, 39-60. https://doi.org/10.1016/0034-6667(76)90010-5
  • 23. Dale, B., Dale, A.L., 2002. Environmental applications of dinoflagellate cysts and acritarchs. In: Haslett, S.K. (Ed.), Environmental Micropalaeontology. Arnold, London, 207-240.
  • 24. Darling, K.F., Schweizer, M., Knudsen, K.L., Evans, K.M., Bird, C., Roberts, A., Filipsson, H.L., Kim, J.-H., Gudmundsson, G., Wade, C.M., Sayer, M.D.J., Austin, W.E.N., 2016. The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic. Mar. Micropaleontol. 129, 1-23. https://doi.org/10.1016/j.marmicro.2016.09.001
  • 25. de Vernal, A., Eynaud, F., Henry, M., Hillaire-Marcel, C., Londeix, L., Mangin, S., Matthiessen, J., Marret, F., Radi, T., Rochon, A., Solignac, S., Turon, J.-L., 2005. Reconstruction of seasurface conditions at middle to high latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM) based on dinoflagellate cyst assemblages. Quaternary Sci. Rev. 24, 897-924. https://doi.org/10.1016/j.quascirev.2004.06.014
  • 26. de Vernal, A., Henry, M., Matthiessen, J., Mudie, P.J., Rochon, A., Boessenkool, K.P., Eynaud, F., Grøsfjeld, K., Guiot, J., Hamel, D., Harland, R., Head, M.J., Kunz-Pirrung, M., Levac, E., Loucheur, V., Peyron, O., Pospelova, V., Radi, T., Turon, J.-L., Voronina, E., 2001. Dinoflagellate cyst assemblages as tracers of sea-surface conditions in the northern North Atlantic, Arctic and sub-Arctic seas: the new “n = 677” data base and its application for quantitative palaeoceanographic reconstruction. J. Quaternary Sci. 16, 681-698. https://doi.org/10.1002/jqs. 659
  • 27. de Vernal, A., Marret, F., 2007. Organic-Walled Dinoflagellate Cysts: Tracers of Sea-Surface Conditions. In: Hillaire-Marcel, C., de Vernal, A. (Eds.), Developments in Marine Geology, Elsevier. B.V., 371-408. https://doi.org/10.1016/S1572-5480(07)01014-7
  • 28. de Vernal, A., Radi, T., Zaragosi, S., Van Nieuwenhove, N., Rochon, A., Allan, E., De Schepper, S., Eynaud, F., Head, M.J., Limoges, A., Londeix, L., Marret, F., Matthiessen, J., Penaud, A., Pospelova, V., Price, A., Richerol, T., 2020. Distribution of common modern dinoflagellate cyst taxa in surface sediments of the Northern Hemisphere in relation to environmental parameters: The new n=1968 database. Mar. Micropaleontol. 159, 101796. https://doi.org/10.1016/j.marmicro.2019.101796
  • 29. de Vernal, A., Rochon, A., Fréchette, B., Henry, M., Radi, T., Solignac, S., 2013. Reconstructing past sea ice cover of the Northern Hemisphere from dinocyst assemblages: Status of the approach. Quaternary Sci. Rev. 79, 122-134. https://doi.org/10.1016/j.quascirev.2013.06.022
  • 30. Dowdeswell, J.A., 1989. On the nature of Svalbard icebergs. J. Glaciol. 35, 224-234.
  • 31. Dowdeswell, J.A., Drewry, D.J., 1985. Place Names on the Nordaustlandet Ice Caps, Svalbard. Polar Rec. (Gr. Brit). 22, 519- 523. https://doi.org/10.1017/S0032247400005970
  • 32. Dowdeswell, J.A., Ottesen, D., Evans, J., Cofaigh, C.Ó., Anderson, J.B., 2008. Submarine glacial landforms and rates of ice-stream collapse. Geology 36, 819-822. https://doi.org/10.1130/G24808A.1
  • 33. Fensome, R.A., Taylor, F.J.R., Norris, G., Sarjeant, W.A.S., Wharton, D.I., Williams, G.L., 1993. A classification of fossil and living dinoflagellates. Micropaleontol. Spec. Publ. 7, 351. Fer, I., Skogseth, R., Haugan, P.M., Jaccard, P., 2003. Observations of the Storfjorden overflow. Deep. Res. Part I Oceanogr. Res. Pap. 50, 1283-1303. https://doi.org/10.1016/S0967-0637(03)00124-9
  • 34. Filipowicz, C., 1990. Textural parameters and classification of deposits in the modern glaciomarine environment, Hornsund Fjord, Spitsbergen. Acta Geol. Pol. 40, 29-67.
  • 35. Fossile, E., Nardelli, M.P., Howa, H., Baltzer, A., Poprawski, Y., Baneschi, I., Doveri, M., Mojtahid, M., 2022. Influence of modern environmental gradients on foraminiferal faunas in the inner Kongsfjorden (Svalbard). Mar. Micropaleontol. 173, 19. https://doi.org/10.1016/j.marmicro.2022.102117
  • 36. Fossile, E., Pia Nardelli, M., Jouini, A., Lansard, B., Pusceddu, A., Moccia, D., Michel, E., Péron, O., Howa, H., Mojtahid, M., 2020. Benthic foraminifera as tracers of brine production in the Storfjorden “sea ice factory”. Biogeosciences 17, 1933-1953. https://doi.org/10.5194/bg-17-1933-2020
  • 37. Glud, R.N., Holby, O., Hoffmann, F., Canfield, D.E., 1998. Benthic mineralization and exchange in Arctic sediments (Svalbard, Norway). Mar. Ecol. Prog. Ser. 173, 237-251.
  • 38. Grøsfjeld, K., Harland, R., Howe, J., 2009. Dinoflagellate cyst assemblages inshore and offshore Svalbard reflecting their modern hydrography and climate. Norw. J. Geol. 89, 121-134.
  • 39. Haarpaintner, J., Gascard, J.-C., Haugan, P.M., 2001. Ice production and brine formation in Storfjorden, Svalbard. J. Geophys. Res.-Oceans 106, 14001-14013. https://doi.org/10.1029/1999JC000133
  • 40. Hagen, J.O., Liestøl, O., Roland, E., 1993. Glacier atlas of Svalbard and Jan Mayen. Nor. Polarinsitutt Meddelelser 129, 141. Hald, M., Dahlgren, T., Olsen, T.-E., Lebesbye, E., 2001. Late Holocene palaeoceanography in Van Mijenfjorden, Svalbard. Polar Res. 20, 23-35. https://doi.org/10.3402/polar.v20i1.6497
  • 41. Hald, M., Korsun, S., 1997. Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic. J. Foraminifer. Res. 27, 101-122. https://doi.org/10.2113/gsjfr. 27.2.101
  • 42. Hald, M., Steinsund, P.I., 1992. Distribution of surface sediment benthic Foraminifera in the southwestern Barents Sea. J. Foraminifer. Res. 22, 347-362. https://doi.org/10.2113/gsjfr.22.4.347
  • 43. Hansen, A., Knudsen, K.L., 1995. Recent foraminiferal distribution in Freemansundet and Early Holocene stratigraphy on Edgeøya, Svalbard. Polar Res. 14, 215-238. https://doi.org/10.1111/j.1751-8369.1995.tb00690.x
  • 44. Harland, R., 1982. Recent dinoflagellate cyst assemblages from the Southern Barents Sea. Palynology 6, 9-18. https://doi.org/10. 1080/01916122.1982.9989231
  • 45. Hayward, B.W., Coze, F.Le, Vandepitte, L., Vanhoorne, B., 2020. Foraminifera in the World Register of Marine Species (WoRMS) Taxonomic Database. J. Foraminifer. Res. 50, 291-300. https://doi.org/10.2113/gsjfr.50.3.291
  • 46. Head, M.J., Harland, R., Matthiessen, J., 2001. Cold marine indicators of the late Quaternary: The new dinoflagellate cyst genus Islandinium and related morphotypes. J. Quaternary Sci. 16, 621-636. https://doi.org/10.1002/jqs.657
  • 47. Hebbeln, D., Wefer, G., 1991. Effects of ice coverage and ice-rafted material on sedimentation in the Fram Strait. Nature 350, 409-411. https://doi.org/10.1038/350409a0
  • 48. Heikkilä, M., Pospelova, V., Forest, A., Stern, G.A., Fortier, L., Macdonald, R.W., 2016. Dinoflagellate cyst production over an annual cycle in seasonally ice-covered Hudson Bay. Mar. Micropaleontol. 125, 1-24. https://doi.org/10.1016/j.marmicro.2016. 02.005
  • 49. Heikkilä, M., Pospelova, V., Hochheim, K.P., Kuzyk, Z.Z.A., Stern, G.A., Barber, D.G., Macdonald, R.W., 2014. Surface sediment dinoflagellate cysts from the Hudson Bay system and their relation to freshwater and nutrient cycling. Mar. Micropaleontol. 106, 79-109. https://doi.org/10.1016/j.marmicro.2013.12.002
  • 50. Howe, J.A., Harland, R., Cottier, F.R., Brand, T., Willis, K.J., Berge, J.R., Grøsfjeld, K., Eriksson, A., 2010. Dinoflagellate cysts as proxies for palaeoceanographic conditions in Arctic fjords. In: Howe, J.A., Austin, W.E.N., Forwick, M., Paetzel, M. (Eds.), Fjord Systems and Archives. Geological Society, London, 61-74. https://doi.org/10.1144/SP344.6
  • 51. Husum, K., Hald, M., 2004. Modern foraminiferal distribution in the subarctic Malangen fjord and adjoining shelf, Northern Norway. J. Foramin. Res. 34, 34-48. https://doi.org/10.2113/0340034
  • 52. Jacobson, D.M., Anderson, D.M., 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32, 279-285. https://doi.org/10.1111/j.0022-3646.1996.00279.x
  • 53. Javaux, E.J., Scott, D.B., 2003. Illustration of Modern Benthic Foraminifera from Bermuda and Remarks on Distribution in other Subtropical/Tropical Areas. Palaentologia Electronica 6, 29 pp.
  • 54. Jennings, A.E., Weiner, N.J., Helgadottir, G., Andrews, J.T., 2004. Modern Foraminiferal Faunas of the Southwestern To Northern Iceland Shelf: Oceanographic and Environmental Controls. J. Foramin. Res. 34, 180-207. https://doi.org/10.2113/34.3.180
  • 55. Jeong, H.J., 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol. 46, 390-396. https://doi.org/10.1111/j.1550-7408.1999.tb04618.x
  • 56. Jernas, P., Klitgaard-Kristensen, D., Husum, K., Koç, N., Tverberg, V., Loubere, P., Prins, M., Dijkstra, N., Gluchowska, M., 2018. Annual changes in Arctic fjord environment and modern benthic foraminiferal fauna: Evidence from Kongsfjorden, Svalbard. Glob. Planet. Change 163, 119-140. https://doi.org/10. 1016/j.gloplacha.2017.11.013
  • 57. Jima, M., Jayachandran, P.R., Bijoy Nandan, S., Krishnapriya, P.P., Aswathy, N.K., Krishnan, K.P., Harikrishnan, M., Radhakrishnan, C.K., 2021. Stable isotopic signatures of sediment carbon and nitrogen sources and its relation to benthic meiofaunal distribution in the Arctic Kongsfjord. Mar. Ecol. 42, 1-11. https://doi.org/10.1111/maec.12648
  • 58. Klitgaard-Kristensen, D., Sejrup, H.P., 1996. Modern benthic foraminiferal biofacies across the Northern North Sea. Sarsia 81, 97-106. https://doi.org/10.1080/00364827.1996.10413615
  • 59. Korsun, S., Hald, M., 2000. Seasonal dynamics of benthic foraminifera in a glacially fed fjord of Svalbard, European arctic. J. Foramin. Res. 30, 251-271. https://doi.org/10.2113/ 0300251
  • 60. Korsun, S., Pogodina, I.A., Forman, S.L., Lubinski, D.J., 1995. Recent foraminifera in glaciomarine sediments from three arctic fjords of Novaja Zemlja and Svalbard. Polar Res. 14, 15-32. https://doi.org/10.1111/j.1751-8369.1995.tb00707.x
  • 61. Kowalewski, W., Rudowski, S., Zalewski, S.M., 1990. Seismoacoustic studies within Wijdefjorden, Spitsbergen. Polish Polar Res. 11, 287-300.
  • 62. Kucharska, M., Kujawa, A., Pawłowska, J., Łacka, ˛ M., Szymańska, N., Lønne, O.J., Zajaczkowski, ˛ M., 2019. Seasonal changes in foraminiferal assemblages along environmental gradients in Adventfjorden (West Spitsbergen). Polar Biol. 42, 569-580. https://doi.org/10.1007/s00300-018-02453-5
  • 63. Kujawa, A., Łacka, ˛ M., Szymańska, N., Pawłowska, J., Telesiński, M.M., Zajączkowski, ˛ M., 2021. Could Norwegian fjords serve as an analogue for the future of the Svalbard fjords? State and fate of high latitude fjords in the face of progressive “atlantification”. Polar Biol. 44, 2217-2233. https://doi.org/10.1007/s00300-021-02951-z
  • 64. Kunz-Pirrung, M., 1998. Rekonstruktion der Oberflächenwassermassen der östlichen Laptevsee im Holozän anhand von aquatischen Palynomorphen. Berichte zur Polarforsch 281, 1- 117.
  • 65. Lepš, J., Šmilauer, P., 2003. Multivariate analysis of ecological data using CanocoTM. Cambridge University Press, Cambridge, UK. Leu, E., Søreide, J.E., Hessen, D.O., Falk-Petersen, S., Berge, J., 2011. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog. Oceanogr. 90, 1832. https://doi.org/10.1016/j.pocean.2011.02.004
  • 66. Loeblich Jr., A.R., Tappan, H., 1987. Foraminiferal Genera and their Classification. Van Nostrand Reinhold Company, New York. Loeng, H., Ozhigin, V., Adlandsvik, ˚ B., 1997. Water fluxes through the Barents Sea. ICES J. Mar. Sci. 54, 310-317. https://doi.org/10.1006/jmsc.1996.0165
  • 67. Łącka, M., Zajączkowski, M., 2016. Does the recent pool of benthic foraminiferal tests in fjordic surface sediments reflect interannual environmental changes? The resolution limit of the foraminiferal record. Ann. Soc. Geol. Pol. 86, 59-71. https://doi.org/10.14241/asgp.2015.019
  • 68. Mackensen, A., Schmiedl, G., Thiele, J., Damm, E., 2017. Microhabitat preferences of live benthic foraminifera and stable carbon isotopes off SW Svalbard in the presence of widespread methane seepage. Mar. Micropaleontol. 132, 1-17. https://doi.org/10.1016/j.marmicro.2017.04.004
  • 69. Majewski, W., Szczuciński, W., Zajączkowski, ˛ M., 2009. Interactions of Arctic and Atlantic water-masses and associated environmental changes during the last millennium, Hornsund (SW Svalbard). Boreas 38, 529-544. https://doi.org/10.1111/j.1502-3885.2009.00091.x
  • 70. Majewski, W., Zajaczkowski, ˛ M., 2007. Benthic foraminifera in Adventfjorden, Svalbard: Last 50 years of local hydrograpic changes. J. Foramin. Res. 37, 107-124. https://doi.org/10. 2113/gsjfr.37.2.107
  • 71. Manley, T.O., 1995. Branching of Atlantic Water within the Greenland-Spitsbergen Passage: An estimate of recirculation. J. Geophys. Res. 100. https://doi.org/10.1029/95JC01251,20,627-20,634
  • 72. Marret, F., Bradley, L., de Vernal, A., Hardy, W., Kim, S.Y., Mudie, P.J., Penaud, A., Pospelova, V., Price, A.M., Radi, T., Rochon, A., 2020. From bi-polar to regional distribution of modern dinoflagellate cysts, an overview of their biogeography. Mar. Micropaleontol. 159, 101753. https://doi.org/10.1016/j.marmicro.2019.101753
  • 73. Maslowski, W., Marble, D., Walczowski, W., Schauer, U., Clement, J.L., Semtner, A.J., 2004. On climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean model simulation. J. Geophys. Res. 109, C03032. https://doi.org/10.1029/2001jc001039
  • 74. Matthiessen, J., de Vernal, A., Head, M.J., Okolodkov, Y., Zonneveld, K.A.F., Harland, R., 2005. Modem organic-walled dinoflagellate cysts in Arctic marine environments and their (paleo-) environmental significance. Paläontologische Zeitschrift 79, 3-51. https://doi.org/10.1007/bf03021752
  • 75. Mertens, K.N., Price, A.M., Pospelova, V., 2012a. Determining the absolute abundance of dinoflagellate cysts in recent marine sediments II: Further tests of the Lycopodium marker-grain method. Rev. Palaeobot. Palyno. 184, 74-81. https://doi.org/10.1016/j. revpalbo.2012.06.012
  • 76. Mertens, K.N., Rengefors, K., Moestrup, Ø., Ellegaard, M., 2012b. A review of recent freshwater dinoflagellate cysts: Taxonomy, phylogeny, ecology and palaeocology. Phycologia 51, 612-619. https://doi.org/10.2216/11-89.1
  • 77. Mertens, K.N., Takano, Y., Gu, H., Yamaguchi, A., Pospelova, V., Ellegaard, M., Matsuoka, K., 2015. Cyst-theca relationship of a new dinoflagellate with a spiny round brown cyst, Protoperidinium lewisiae sp. nov., and its comparison to the cyst of Oblea acanthocysta. Phycol. Res. 63, 110-124. https://doi.org/10.1111/pre.12083
  • 78. Mertens, K.N., Verhoeven, K., Verleye, T., Louwye, S., Amorim, A., Ribeiro, S., Deaf, A.S., Harding, I.C., De Schepper, S., González, C., Kodrans-Nsiah, M., De Vernal, A., Henry, M., Radi, T., Dybkjaer, K., Poulsen, N.E., Feist-Burkhardt, S., Chitolie, J., Heilmann-Clausen, C., Londeix, L., Turon, J.L., Marret, F., Matthiessen, J., McCarthy, F.M.G., Prasad, V., Pospelova, V., Kyffin Hughes, J.E., Riding, J.B., Rochon, A., Sangiorgi, F., Welters, N., Sinclair, N., Thun, C., Soliman, A., Van Nieuwenhove, N., Vink, A., Young, M., 2009. Determining the absolute abundance of dinoflagellate cysts in recent marine sediments: The Lycopodium marker-grain method put to the test. Rev. Palaeobot. Palyno. 157, 238-252. https://doi.org/10. 1016/j.revpalbo.2009.05.004
  • 79. Mertens, K.N., Yamaguchi, A., Takano, Y., Pospelova, V., Head, M.J., Radi, T., Pieńkowski, A.J., De Vernal, A., Kawami, H., Matsuoka, K., 2013. A new heterotrophic dinoflagellate from the north-eastern pacific, Protoperidinium fukuyoi: Cyst-theca relationship, phylogeny, distribution and ecology. J. Eukaryot. Microbiol. 60, 545-563. https://doi.org/10.1111/jeu.12058
  • 80. Moestrup, Ø., Lindberg, K., Daugbjerg, N., 2009. Studies on woloszynskioid dinoflagellates IV: The genus Biecheleria gen. nov. Phycol. Res. 57, 203-220. https://doi.org/10.1111/j. 1440-1835.2009.00540.x
  • 81. Montresor, M., Lovejoy, C., Orsini, L., Procaccini, G., Roy, S., 2003. Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biol. 26, 186-194. https://doi.org/10. 1007/s00300-002-0473-9
  • 82. Montresor, M., Procaccini, G., Stoecker, D.K., 1999. Polarella glacialis, gen. nov., sp. nov. (Dinophyceae): Suessiaceae are still alive!. J. Phycol. 35, 186-197.
  • 83. Mudie, P.J., Rochon, A., 2001. Distribution of dinoflagellate cysts in the Canadian Arctic marine region. J. Quaternary Sci. 16, 603-620. https://doi.org/10.1002/jqs.658 Oceanologia 65 (2023) 571-594
  • 84. Murray, J.W., 1991. Ecology and Palaeoecology of Benthic Foraminifera. Longman Scientific and Technical. Murray, J.W., Alve, E., 2016. Benthic foraminiferal biogeography in NW European fjords: A baseline for assessing future change. Estuar. Coast. Shelf Sci. 181, 218-230. https://doi.org/10.1016/j.ecss.2016.08.014
  • 85. Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., Lohmann, G., 2011. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach. Earth Planet. Sci. Lett. 306, 137-148. https://doi.org/10.1016/j.epsl.2011.04.011
  • 86. Nardelli, M.P., Fossile, E., Péron, O., Howa, H., Mojtahid, M., 2023. Early taphonomy of benthic foraminifera in Storfjorden ‘sea-ice factory’: the agglutinated/calcareous ratio as a proxy for brine persistence. Boreas 52, 109-123. https://doi.org/10.1111/bor. 12592
  • 87. Nilsen, F., Cottier, F.R., Skogseth, R., Mattsson, S., 2008. Fjord-shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont. Shelf Res. 28, 1838-1853. https://doi.org/10.1016/j.csr.2008.04.015
  • 88. Nilsen, F., Skogseth, R., Vaardal-Lunde, J., Inall, M., 2016. A Simple Shelf Circulation Model: Intrusion of Atlantic Water on the West Spitsbergen Shelf. J. Phys. Oceanogr. 46, 1209-1230. https://doi.org/10.1175/JPO-D-15-0058.1
  • 89. Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H., Letzig, T., Reimnitz, E., Thiede, J., 1994. Sediments in Arctic sea ice: Implications for entrainment, transport and release. Mar. Geol. 119, 185-214. https://doi.org/10.1016/0025-3227(94)90181-3
  • 90. Obrezkova, M.S., Pospelova, V., Kolesnik, A.N., 2023. Diatom and dinoflagellate cyst distribution in surface sediments of the Chukchi Sea in relation to the upper water masses. Mar. Micropaleontol. 178, 102184. https://doi.org/10.1016/j.marmicro.2022.102184
  • 91. Pawłowska, J., Łacka, ˛ M., Kucharska, M., Szymańska, N., Koziorowska, K., Kuliński, K., Zajączkowski, M., 2017. Benthic foraminifera contribution to fjord modern carbon pools: A seasonal study in Adventfjorden. Spitsbergen. Geobiology 15, 704-714. https://doi.org/10.1111/gbi.12242
  • 92. Pfirman, S.L., Bauch, D., Gammelsrød, T., 1994. The Northern Barents Sea: Water Mass Distribution and Modification. In: Johannessen, O.M., Muench, R.D., Overland, J.E. (Eds.), The Polar Oceans and Their Role in Shaping the Global Environment, Vol. 85. American Geophysical Union, 77-94.
  • 93. Polyak, L., Mikhailov, V., 1996. Post-glacial environments of the southeastern Barents Sea: foraminiferal evidence. Geol. Soc. London, Sp. Publ., Vol. 111, 323-337.
  • 94. Pospelova, V., Chmura, G.L., Boothman, W.S., Latimer, J.S., 2005. Spatial distribution of modern dinoflagellate cysts in polluted estuarine sediments from Buzzards Bay (Massachusetts, USA) embayments. Mar. Ecol. Prog. Ser. 292, 23-40. https://doi.org/10.3354/meps292023
  • 95. Pospelova, V., Esenkulova, S., Johannessen, S.C., O’Brien, M.C., Macdonald, R.W., 2010. Organic-walled dinoflagellate cyst production, composition and flux from 1996 to 1998 in the central Strait of Georgia (BC, Canada): A sediment trap study. Mar. Micropaleontol. 75, 17-37. https://doi.org/10.1016/j.marmicro.2010.02.003
  • 96. Pospelova, V., Head, M.J., 2002. Islandinium brevispinosum sp. nov. (Dinoflagellata), a new organic-walled dinoflagellate cyst from modern estuarine sediments of New England (USA). J. Phycol. 38, 593-601. https://doi.org/10.1046/j.1529-8817.2002.01206.x
  • 97. Ramseier, R.O., Garrity, C., Bauerfeind, E., Peinert, R., 1999. Seaice impact on long-term particle flux in the Greenland Sea’s Is Odden-Nordbukta region, 1985—1996. J. Geophys. Res. 104, 5329-5343. https://doi.org/10.1029/1998jc900048
  • 98. Rasmussen, T.L., Forwick, M., Mackensen, A., 2012. Reconstruction of inflow of Atlantic Water to Isfjorden, Svalbard during the Holocene: Correlation to climate and seasonality. Mar. Micropaleontol. 94—95, 80-90. https://doi.org/10.1016/j.marmicro.2013.03.011
  • 99. Rochon, A., de Vernal, A., Turon, J.-L., Matthiessen, J., Head, M.J., 1999. Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-surface parameters. Am. Assoc. Stratigr. Palynol. Contrib. Ser. 35, 1-146.
  • 100. Romano, E., Bergamin, L., Parise, M., 2022. Benthic Foraminifera as Environmental Indicators in Mediterranean Marine Caves: A Review. Geosciences 12, 42. https://doi.org/10.3390/geosciences12010042
  • 101. Rudels, B., Friedrich, H.J., 2000. The Transformations of Atlantic Water in the Arctic Ocean and Their Significance for the Freshwater Budget. In: Lewis, E.L., Jones, E.P., Lemke, P., Prowse, T.D., Wadhams, P. (Eds.), The Freshwater Budget of the Arctic Ocean. Springer, Dordrecht, 503-532. https://doi.org/10.1007/978-94-011-4132-1_21
  • 102. Rudels, B., Jones, E.P., Anderson, L.G., Kattner, G., 1994. On the Intermediate Depth Waters of the Arctic Ocean. In: Johannessen, O.M., Muench, R.D., Overland, J.E. (Eds.), The Polar Oceans and Their Role in Shaping the Global Environment, Vol. 85. American Geophysical Union, 33-46. https://doi.org/10.1029/gm085p0033
  • 103. Sakshaug, E., 2004. Primary and Secondary Production in the Arctic Seas. In: Stein, R., Macdonald, R.W. (Eds.), The Organic Carbon Cycle in the Arctic Ocean. Springer, Berlin, Heidelberg, 57-81. https://doi.org/10.1007/978-3-642-18912-8_3
  • 104. Saloranta, T.M., Svendsen, H., 2001. Across the Arctic front west of Spitsbergen: high-resolution CTD sections from 1998—2000. Polar Res. 20, 177-184. https://doi.org/10.1111/j.1751-8369.2001.tb00054.x
  • 105. Schiermeier, Q., 2007. Polar research: The new face of the Arctic. Nature 446, 133—135. https://doi.org/10.1038/446133a
  • 106. Scott, D.B., Schell, T., Rochon, A., Blasco, S., 2008. Benthic foraminifera in the surface sediments of the Beaufort Shelf and slope, Beaufort Sea, Canada: Applications and implications for past sea-ice conditions. J. Marine Syst. 74, 840-863. https://doi.org/10.1016/j.jmarsys.2008.01.008
  • 107. Seidenkrantz, M.-S., 2013. Benthic foraminifera as palaeo seaice indicators in the subarctic realm — examples from the Labrador Sea-Baffin Bay region. Quaternary Sci. Rev. 79, 135-144. https://doi.org/10.1016/j.quascirev.2013.03.014
  • 108. Serreze, M.C., Barry, R.G., 2011. Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change 77, 85-96. https://doi.org/10.1016/j.gloplacha.2011.03. 004
  • 109. Serreze, M.C., Francis, J.A., 2006. The Arctic amplification debate. Clim. Change 76, 241-264. https://doi.org/10.1007/s10584-005-9017-y
  • 110. Skogseth, R., Haugan, P.M., Haarpaintner, J., 2004. Ice and brine production in Storfjorden from four winters of satellite and in situ observations and modeling. J. Geophys. Res.-Oceans 109, 1-15. https://doi.org/10.1029/2004JC002384
  • 111. Skogseth, R., Haugan, P.M., Jakobsson, M., 2005. Watermass transformations in Storfjorden. Cont. Shelf Res. 25, 667-695. https://doi.org/10.1016/j.csr.2004.10.005
  • 112. Ślubowska, M.A., Koç, N., Rasmussen, T.L., Klitgaard Kristensen, D., 2005. Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: Evidence from the northern Svalbard continental margin, 80°N. Paleoceanography 20, 1-16. https://doi.org/10.1029/2005PA001141
  • 113. Smith Jr., W.O., Baumann, M.E.M., Wilson, D.L., Aletsee, L., 1987. Phytoplankton Biomass and Productivity in the Marginal Ice Zone of the Fram Strait During Summer 1984. J. Geophys. Res. 92, 6777-6786. https://doi.org/10.1029/JC092iC07p06777
  • 114. Søreide, J.E., Leu, E.V.A., Berge, J., Graeve, M., Falk-Petersen, S., 2010. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob. Change Biol. 16, 3154-3163. https://doi.org/10.1111/j.1365-2486.2010.02175.x
  • 115. Stoecker, D.K., 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol. 46, 397-401. https://doi.org/10.1111/j.1550-7408.1999.tb04619.x
  • 116. Svendsen, H., Beszczyńska-Möller, ´ A., Hagen, J.O., Lefauconnier, B., Tverberg, V., Gerland, S., Ørbøk, J.B., Bischof, K., Papucci, C., Zajączkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J.G., Dallmann, W., 2002. The physical environment of Kongsfjorden-Krossfjorden, and Arctic fjord system in Svalbard. Polar Res. 21, 133-166. https://doi.org/10. 1111/j.1751-8369.2002.tb00072.x
  • 117. Syvitski, J.P.M., Shaw, J., 1995. Sedimentology and Geomorphology of Fjords. In: Perillo, G.M.E. (Ed.), Geomorphology and Sedimentology of Estuaries. Developments in Sedimentology. Elsevier Science B.V., 113-178. https://doi.org/10.1016/ S0070-4571(05)80025-1
  • 118. Szymańska, N., Łącka, M., Koziorowska-Makuch, K., Kuliński, K., Pawłowska, J., Kujawa, A., Telesiński, M.M., Zajączkowski, M., 2021. Foraminifera-derived carbon contribution to sedimentary inorganic carbon pool: A case study from three Norwegian fjords. Geobiology 19, 631-641. https://doi.org/10.1111/gbi. 12460
  • 119. Taylor, F.J.R., 1987. The Biology of Dinoflagellates. Blackwell Scientific, Oxford. Taylor, F.J.R., Hoppenrath, M., Saldarriaga, J.F., 2008. Dinoflagellate diversity and distribution. Biodiversity Conservation 17, 407-418. https://doi.org/10.1007/s10531-007-9258-3
  • 120. ter Braak, C.J.F., Šmilauer, P., 2002. CANOCO Reference Manual and CanoDraw for Windows user’s Guide. Software for Canonical Community Ordination. Wall, D., Dale, B., 1966. Living Fossils” in Western Atlantic Plankton. Nature 211, 1025-1026. https://doi.org/10.1038/2111025a0
  • 121. Wallace, M.I., Cottier, F.R., Berge, J., Tarling, G.A., Griffiths, C., Brierley, A.S., 2010. Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: An insight into the influence of sea ice cover on zooplankton behavior. Limnol. Oceanogr. 55, 831-845. https://doi.org/10.4319/lo.2009.55.2.0831
  • 122. Węsławski, J.M., Jankowski, A., Kwasniewski, S., Swerpel, S., Ryg, M., 1991. Summer hydrology and zooplankton in two Svalbard fiords. Polish Polar Res. 12, 445-460.
  • 123. Włodarska-Kowalczuk, M., Pawłowska, J., Zajączkowski, ˛ M., 2013. Do foraminifera mirror diversity and distribution patterns of macrobenthic fauna in an Arctic glacial fjord? Mar. Micropaleontol. 103, 30-39. https://doi.org/10.1016/j.marmicro.2013.07. 002
  • 124. WMO, 2014. Sea Ice Nomenclature.
  • 125. Yamashita, C., Omachi, C., Santarosa, A.C.A., Iwai, F.S., Araujo, B.D., Disaró, S.T., Alves Martins, M.V., Vicente, T.M., Taniguchi, N., Burone, L., Mahiques, M.M., Bícego, M.C., Figueira, R.C.L., Sousa, S.H.M., 2020. Living benthic foraminifera of Santos continental shelf, southeastern Brazilian continental margin (SW Atlantic): chlorophyll-a and particulate organic matter approach. J. Sediment. Environ. 5, 17-34. https://doi.org/10.1007/s43217-019-00001-7
  • 126. Zajączkowski, ˛ M., Szczuciński, W., Plessen, B., Jernas, P.E., 2010. Benthic foraminifera in Hornsund, Svalbard: Implications for paleoenvironmental reconstructions. Polish Polar Res. 31, 349- 375. https://doi.org/10.2478/v10183
  • 127. Zajączkowski, ˛ M., Włodarska-Kowalczuk, M., 2007. Dynamic sedimentary environments of an Arctic glacier-fed river estuary (Adventfjorden, Svalbard). I. Flux, deposition, and sediment dynamics. Estuar. Coast. Shelf Sci. 74, 285-296. https://doi.org/10.1016/j.ecss.2007.04.015
  • 128. Zgrundo, A., Wojtasik, B., Convey, P., Majewska, R., 2017. Diatom communities in the High Arctic aquatic habitats of northern Spitsbergen (Svalbard). Polar Biol. 40, 873-890. https://doi.org/10.1007/s00300-016-2014-y
  • 129. Zonneveld, K.A.F., 1997. New species of organic walled dinoflagellate cysts from modern sediments of the Arabian Sea (Indian Ocean). Rev. Palaeobot. Palyno. 97, 319-337. https://doi.org/10.1016/S0034-6667(97)00002-X
  • 130. Zonneveld, K.A.F., Marret, F., Versteegh, G.J.M., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L., Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt, J.F., Kim, S.Y., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix, L., Lu, S.H., Mahmoud, M.S., Marino, G., Matsuoka, K., Matthiessen, J., Mildenhal, D.C., Mudie, P.J., Neil, H.L., Pospelova, V., Qi, Y., Radi, T., Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J.L., Verleye, T., Wang, Y., Wang, Z., Young, M., 2013. Atlas of modern dinoflagellate cyst distribution based on 2405 data points. Rev. Palaeobot. Palyno. 191, 1-197. https://doi.org/10.1016/j. revpalbo.2012.08.003
  • 131. Zonneveld, K.A.F., Pospelova, V., 2015. A determination key for modern dinoflagellate cysts. Palynology 39, 387-409. https://doi.org/10.1080/01916122.2014.990115
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b7a818e2-747a-4978-b551-209776bf8ce7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.