Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering (18-19.04.2016 ; Poznań, Polska)
Języki publikacji
Abstrakty
Standard and positive electrical circuits with zero transfer matrices are addressed. It is shown that there exists a large class of electrical circuits composed of resistances, inductances, capacitances and voltage (current) sources with zero transfer matrices. The electrical circuits are unreachable, unobservable and unstable for all values of the resistances, inductances and capacitances. An extension of these considerations to fractional electrical circuits is given.
Słowa kluczowe
Rocznik
Tom
Strony
11--28
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Białystok University of Technology
Bibliografia
- [1] Antsaklis E., Michel A., Linear Systems, Birkhauser, Boston 2006.
- [2] Busłowicz M., Stability of linear continuous-time fractional order systems with delays of the retarded type, Bull. Pol. Acad. Sci. Tech., Vol. 56, no. 4, 2008, pp. 319-324.
- [3] Dzieliński A., Sierociuk D., Stability of discrete fractional order state-space systems, Journal of Vibrations and Control, Vol. 14, no. 9-10, 2008, pp. 1543-1556.
- [4] Dzieliński A., Sierociuk D., Sarwas G., Ultracapacitor parameters identification based on fractional order model, Proc. European Control Conference, Budapest, Hungary, 2009.
- [5] Farina L., Rinaldi S., Positive Linear Systems: Theory and Applications, J. Wiley & Sons, New York 2000.
- [6] Kaczorek T., Asymptotic stability of positive fractional 2D linear systems, Bull. Pol. Acad. Sci. Tech., Vol. 57, no. 3, 2009, pp. 289-292.
- [7] Kaczorek T., Constructability and observability of standard and positive electrical circuits, Electrical Review, Vol. 89, no. 7, 2013, pp. 132-136.
- [8] Kaczorek T., Controllability and observability of linear electrical circuits, Electrical Review, Vol. 87, no. 9a, 2011, pp. 248-254.
- [9] Kaczorek T., Decomposition of the pairs (A,B) and (A,C) of the positive discretetime linear systems, Archives of Control Sciences, Vol. 20, no. 3, 2010, pp. 341-361.
- [10] Kaczorek T., Decoupling zeros of positive discrete-time linear systems, Circuits and Systems, Vol. 1, 2010, pp. 41-48.
- [11] Kaczorek T., Fractional positive continuous-time linear systems and their reachability, Int. J. Appl. Math. Comput. Sci., Vol. 18, no. 2, 2008, pp. 223-228.
- [12] Kaczorek T., Positive 1D and 2D Systems, London, UK: Springer-Verlag, 2002.
- [13] Kaczorek T., Positive electrical circuits and their reachability, Archives of Electrical Engineering, Vol. 60, no. 3, 2011, pp. 283-301.
- [14] Kaczorek T., Positive linear systems consisting of n subsystems with different fractional orders, IEEE Trans. Circuits and Systems, Vol. 58, no. 6, 2011, pp. 1203-1210.
- [15] Kaczorek T., Positivity and reachability of fractional electrical circuits, Acta Mechanica et Automatica, Vol. 5, no. 2, 2011, pp. 42-51.
- [16] Kaczorek T., Practical stability of positive fractional discrete-time linear systems, Bull. Pol. Acad. Sci. Tech., Vol. 56, no. 4, 2008, pp. 313-317.
- [17] Kaczorek T., Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Journal Européen des Systemes Automatisés, JESA, Vol. 42, no. 6-8, 2008, pp. 769-787.
- [18] Kaczorek T., Reachability and observablity of fractional positive continuous-time linear systems, Proc. XV Conf. System Modelling and Control, Sept. 23-24, Lodz, Poland, 2013.
- [19] Kaczorek T., Reachability and observability of fractional positive electrical circuits, Computational Problems of Electrical Engineering, Vol. 3, no. 2, 2013, pp. 28-36.
- [20] Kaczorek T., Selected Problems of Fractional Systems Theory, Berlin, Germany: Springer-Verlag, 2011.
- [21] Kaczorek T., Stability of positive continuous-time systems with delays, Bull. Pol. Acad. Sci. Tech., Vol. 57, no. 4, 2009, pp. 395-398.
- [22] Kaczorek T., Rogowski K., Fractional Linear Systems and Electrical Circuits, Studies in Systems, Decision and Control, Vol. 13, Springer, 2015.
- [23] Kailath T., Linear systems, Prentice Hall, Englewood Cliffs, New York 1980.
- [24] Kalman R., Mathematical description of linear systems, SIAM J. Control, Vol. 1, no. 2, 1963, pp. 152-192.
- [25] Kalman R., On the general theory of control systems, Proc. First Intern, Congress on Automatic Control, London, UK: Butterworth, 1960, pp. 481-493.
- [26] Oldham K., Spanier J., The fractional calculus: integrations and differentiations of arbitrary order, New York, USA: Academic Press, 1974.
- [27] Ostalczyk P., Epitome of the Fractional Calculus, Theory and its Applications in Automatics, Lodz, Poland: Technical University of Lodz Press, 2008. (in Polish).
- [28] Podlubny I., Fractional differential equations, San Diego, USA: Academic Press, 1999.
- [29] Rosenbrock H., State-space and multivariable theory, New York, USA: J. Wiley, 1970.
- [30] Tokarzewski J., Finite zeros of positive linear discrete-time systems, Bull. Pol. Acad. Sci. Tech., Vol. 59, no. 3, 2011, pp. 287-292.
- [31] Tokarzewski J., Finite zeros of positive continuous-time systems, Bull. Pol. Acad. Sci. Tech., Vol. 59, no. 3, 2011, pp. 293-298.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b7713f64-fea1-4e77-a10d-35090f7a5020