Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | Vol. 42, nr 4 | 683--697
Tytuł artykułu

Plasmon excitation in periodic multilayers: modeling by boundary integral equations

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optical diffraction is one of the few exploited applications of boundary integral equations. In this paper, a numerical model based on boundary integral equations (BIE) is applied to a periodic multilayer. We present possible implementations of a derived algorithm that enables solution, e.g., for over-coated profiles. We give our attention to optical systems producing plasmon waves, for which we study the influence of several structural parameters on the diffraction response. The results are compared with the classical rigorous coupled waves method (RCWM) method, and, the case of non-smooth interface is discussed.
Wydawca

Czasopismo
Rocznik
Strony
683--697
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
autor
  • Department of Mathematics, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic, arnost.zidek@vsb.cz
autor
  • Department of Mathematics, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
  • Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
autor
  • Department of Mathematics, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
Bibliografia
  • [1] HOMOLA J., YEE S.S., GAUGLITZ G., Surface plasmon resonance sensors: review, Sensors and Actuators B: Chemical 54(1–2), 1999, pp. 3–15.
  • [2] HUTTER E., FENDLER J.H., Exploitation of localized surface plasmon resonance, Advanced Materials 16(19), 2004, pp. 1685–1706.
  • [3] PETIT R., [ED.], Electromagnetic Theory of Gratings, Springer, Berlin, 1980.
  • [4] NEVIÈRE M., POPOV E., Light Propagation in Periodic Media: Differential Theory and Design, Marcel Dekker, New York, 2002.
  • [5] BAO G., COWSAR L., MASTERS W., [EDS.], Mathematical Modeling in Optical Science, SIAM, Philadelphia, 2001.
  • [6] GLYTSIS E.N., GAYLORD T.K., Rigorous three-dimensional coupled-wave diffraction analysis of single and cascaded anisotropic gratings, Journal of the Optical Society of America A 4(11), 1987, pp. 2061–2080.
  • [7] LIFENG LI, Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings, Journal of the Optical Society of America A 13(5), 1996, pp. 1024–1035.
  • [8] GRANET G., GUIZAL B., Efficient implementation of the coupled wave method for metallic lamellar gratings in TM polarization, Journal of the Optical Society of America A 13(5), 1996, pp. 1019–1023.
  • [9] POPOV E., NEVIÈRE M., Differential theory for diffraction gratings: a new formulation for TM polarization with rapid convergence, Optics Letters 25(9), 2000, pp. 598–600.
  • [10] COSTABEL M., STEPHAN E., A direct boundary integral equation method for transmission problems, Journal of Mathematical Analysis and Applications 106(2), 1985, pp. 367–413.
  • [11] NEDELEC J.C., STARLING F., Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell’s equations, SIAM Journal on Mathematical Analysis 22(6), 1991, pp. 1679–1701.
  • [12] ELSCHNER J., SCHMIDT G., Diffraction in periodic structures and optimal design of binary gratings. Part I: Direct problems and gradient formulas, Mathematical Methods in the Applied Sciences 21(14), 1998, pp. 1297–1342.
  • [13] PRATHER D.W., MIROTZNIK M.S., MAIT J.N., Boundary integral methods applied to the analysis of diffractive optical elements, Journal of the Optical Society of America A 14(1), 1997, pp. 34–43.
  • [14] BENDICKSON J.M., GLYTSIS E.N., GAYLORD T.K., PETERSON A.F., Modeling considerations of rigorous boundary element method analysis of diffractive optical elements, Journal of the Optical Society of America A 18(7), 2001, pp. 1495–1506.
  • [15] MAGATH T., SEREBRYANNIKOV A.E., Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs, Journal of the Optical Society of America A 22(11), 2005, pp. 2405–2418.
  • [16] LINTON C.M., The Green’s function for the two-dimensional Helmholtz equation in periodic domains, Journal of Engineering Mathematics 33(4), 1998, pp. 377–401.
  • [17] ŽÍDEK A., VLČEK J., KRČEK J., Solution of diffraction problems by boundary integral equations, Proceedings of 11th International Conference APLIMAT 2012, February 7–9, 2012, Bratislava, Slovak Republic, publ. by Faculty of Mechanical Engineering, Slovak University of Technology, Bratislava, 2012, pp. 221–229.
  • [18] PARÍS F., CAÑAS J., Boundary Element Method. Fundamentals and Applications, Oxford Univesity Press, Oxford, 1997.
  • [19] DOBSON D., FRIEDMANN A., The Time-Harmonic Maxwell Equations in a Doubly Periodic Structure, www.ima.umn.edu/preprints/Feb91Series/762.pdf
  • [20] PEI-BAI ZHOU, Numerical Analysis of Electromagnetic Fields, Springer Verlag, Berlin, 1993.
  • [21] KLEEMANN B.H., MITREITER A., WYROWSKI F., Integral equation method with parametrization of grating profile. Theory and experiments, Journal of Modern Optics 43(7), 1996, pp. 1323–1349.
  • [22] www.sciner.com/Opticsland/FS.htm
  • [23] JOHNSON P.B., CHRISTY R.W., Optical constants of the noble metals, Physical Review B 6(12), 1972, pp. 4370–4379.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b75f30c3-3345-442e-8c7c-e6166b8a094d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.