Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 29, Fasc. 2 | 251--269
Tytuł artykułu

Independence arising from interacting Fock spaces and related central limit theorem

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present the notion of projective independence, which abstracts, in an algebraic setting, the factorization rule for the vacuum expectation of creation-annihilations-preservation operators in interacting Fock spaces described in [3]. Furthermore, we give a central limit theorem based on such a notion and a Fock representation of the limit process.
Wydawca

Rocznik
Strony
251--269
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Department of Mathematics, Faculty of Sciences, Al-Imam Muhammad Ibn Saud Islamic University, P. O. Box 90050, 11623 Riyadh, Kingdom of Saudi Arabia, assghorbal@imamu.edu.sa
autor
  • Dipartimento di Matematica, Università degli Studi di Bari, Via E. Orabona, 4-70125 Bari, Italy, crismalev@dm.uniba.it
Bibliografia
  • [1] L. Accardi and A. Bach, The harmonic oscillator as quantum central limit theorem for Bernoulli processes, preprint, 1985.
  • [2] L. Accardi and M. Bożejko, Interacting Fock spaces and gaussianization of probability measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1 (1998), pp. 663-670.
  • [3] L. Accardi, V. Crismale and Y. G. Lu, Universal central limit theorems based on interacting Fock spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 (2005), pp. 631-650.
  • [4] L. Accardi, A. Frigerio and J. Lewis, Quantum stochastic processes, Publ. Res. Inst. Math. Sci. 18 (1982), pp. 97-133.
  • [5] L. Accardi, Y. Hashimoto and N. Obata, Notions of independence related to the free group, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1 (1998), pp. 201-220.
  • [6] L. Accardi, Y. G. Lu and I. Volovich, The QED Hilbert module and interacting Fock spaces, International Institute for Advances Studies, Kyoto 1997.
  • [7] A. Ben Ghorbal, V. Crismale and Y. G. Lu, A constructive boolean central limit theorem, Boll. Unione Mat. Ital. Sez. B 10 (2007), pp. 593-604.
  • [8] A. Ben Ghorbal and M. Schürmann, Non-commutative notions of stochastic independence, Math. Proc. Cambridge Philos. Soc. 133 (2002), pp. 531-561.
  • [9] M. Bożejko and R. Speicher, Interpolations between bosonic and fermionic relations given by generalized Brownian motions, Math. Z. 222 (1996), pp. 135-159.
  • [10] V. Crismale, A projective central limit theorem and interacting Fock space representation for the limit process, Banach Center Publ. 78 (2008), pp. 69-80.
  • [11] M. De Giosa and Y. G. Lu, The free creation and annihilation operators as the central limit of the quantum Bernoulli process, Random Oper. Stochastic Equations 5 (1997), pp. 227-236.
  • [12] N. Giri and W. von Waldenfels, An algebraic version of the central limit theorem, Z. Wahrsch. Verw. Gebiete 42 (1978), pp. 129-134.
  • [13] A. Krystek and L. Wojakowski, Convolution and central limit theorem arising from addition of field operators in one mode type interacting Fock spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 (2005), pp. 651-658.
  • [14] V. Liebsher, On a central limit theorem for monotone noise, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), pp. 155-167.
  • [15] N. Muraki, Monotone independence, monotonic central limit theorem and monotonic law of small numbers, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (2001), pp. 39-58.
  • [16] N. Muraki, The five independencies as natural products, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), pp. 333-371.
  • [17] M. Schürmann, Non-commutative probability on algebraic structures, in: Probability Measures on Groups and Related Structures XI, World Scientific, River Edge, NJ, 1995, pp. 332-356.
  • [18] R. Speicher, On universal product, Free Probab. Th., Fields Inst. Commun. 12 (1997), pp. 257-266.
  • [19] R. Speicher and W. von Waldenfels, A general central limit theorem and invariance principle, in: Quantum Probability and Related Topics IX, L. Accardi (Ed.), World Scientific, River Edge, NJ, 1994, pp. 371-387.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b757ea93-6493-4e1a-aa96-c0ddd21b0fdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.