Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 38, no. 2 | 373--384
Tytuł artykułu

Entropies for automated detection of coronary artery disease using ECG signals: A review

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coronary artery disease (CAD) develops when coronary arteries are unable to supply oxygen-rich blood to the heart due to the accumulation of cholesterol plaque on the inner walls of the arteries. Chronic insufficient blood flow leads to the complications, including angina and heart failure. In addition, acute plaque rupture may lead to vessel occlusion, causing a heart attack. Thus, it is encouraged to have regular check-ups to diagnose CAD early and avert complications. The electrocardiogram (ECG) is a widely used diagnostic tool to study the electrical activity of the heart. However, ECG signals are highly chaotic, complex, and non-stationary in their behaviour. It is laborious, and requires expertise, to visually interpret these signals. Hence, the computer-aided detection system (CADS) is developed to assist clinicians to interpret the ECG signals fast and reliably. In this work, we have employed sixteen entropies to extract the various hidden signatures from ECG signals of normal healthy persons as well as patients with CAD. We observed that the majority of extracted entropy features showed lower values for CAD patients compared to normal subjects. We believe that there is one possible reason which could be the decreased in the variability of ECG signals is associated with reduced heart pump function.
Wydawca

Rocznik
Strony
373--384
Opis fizyczny
Bibliogr. 82 poz., rys., tab., wykr.
Twórcy
  • Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia, aru@np.edu.sg
autor
  • Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
  • Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
autor
  • Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
autor
  • Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
autor
  • Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
autor
  • National Heart Centre Singapore, Singapore; Duke-National University of Singapore Medical School, Singapore
Bibliografia
  • [1] Fujita H, Sudarshan VK, Adam M, Oh SL, Tan JH, Hagiwara Y, et al. Characterization of cardiovascular diseases using wavelet packet decomposition and nonlinear measures of electrocardiogram signal. International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Springer; 2017.
  • [2] Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics – 2017 update: a report from the American Heart Association. Circulation 2017. http://dx.doi.org/10.1161/CIR.0000000000000485 [accessed 30.01.18].
  • [3] GBD 2015 Mortality and Causes of Death, Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet 2016;388 (10,053):1459–544.
  • [4] American Heart Association. What is cardiovascular disease? Retrieved from http://www.heart.org/HEARTORG/Support/What-is- Cardiovascular-Disease_UCM_301852_Article.jsp#. WgOf5VuCzIU [accessed 02.01.18].
  • [5] Raghavendra U, Fujita H, Gudigar A, Shetty R, Nayak K, Pai U, et al. Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images. Biomed Sign Process Control 2018;40:324–34.
  • [6] Kumar M, Pachori RB, Acharya UR. Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals. Biomed Sign Process Control 2017;31:301–8.
  • [7] Acharya UR, Sudarshan VK, Koh JEW, Martis RJ, Tan JH, Oh SL, et al. Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals. Biomed Sign Process Control 2017;31:31–43.
  • [8] Sood S, Kumar M, Pachori RB, Acharya UR. Application of empirical mode decomposition-based features for analysis of normal and CAD heart rate signals. J Mech Med Biol 2016;16(1):164002.
  • [9] Acharya UR, Fujita H, Adam M, Oh SL, Sudarshan VK, Tan JH, et al. Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study. Inf Sci 2017;377:17–29.
  • [10] Acharya UR, Fujita H, Oh SL, Adam M, Tan JH, Chua KC. Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowl-Based Syst 2017;132:62–71.
  • [11] Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci 2017;415:190–8.
  • [12] Acharya UR, Fujita H, Oh SL, Raghavendra U, Tan JH, Adam M, et al. Automated identification of shockable and non- shockable life-threatening ventricular arrhythmias using convolutional neural network. Fut Gener Comput Syst 2018;79:952–9.
  • [13] Kumar M, Pachori RB, Acharya UR. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework. Entropy 2017;19(9):488.
  • [14] Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci 2017;405:81–90.
  • [15] Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M, et al. A deep convolutional neural network model to classify heartbeats. Comput Biol Med 2017;89:389–96.
  • [16] Centers for Disease Control and Prevention. Coronary artery disease (CAD). Retrieved from https://www.cdc.gov/heartdisease/coronary_ad.htm [accessed 02.01.18].
  • [17] Acharya UR, Fujita H, Sudarshan VK, Oh SL, Adam M, Koh JEW, et al. Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals. Neural Comput Algor 2017;28(10):3073–94.
  • [18] Acharya UR, Fujita H, Sudarshan VK, Oh SL, Adam M, Tan JH, et al. Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transform of electrocardiogram signal. Knowl-Based Syst 2017;132: 156–66.
  • [19] Sudarshan VK, Acharya UR, Oh SL, Adam M, Tan JH, Chua KC, et al. Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2s of ECG signals. Comput Biol Med 2017;83:48–58.
  • [20] Acharya UR, Suri JS, Spaan JAE, Krishnan SM. Advances in cardiac signal processing. Berlin, Heidelberg: Springer; 2007.
  • [21] Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JEW. Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl-Based Syst 2015;88:85–96.
  • [22] Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng KH, Suri JS. Automated diagnosis of epileptic EEG using entropies. Biomed Sign Process Control 2012;7(4):401–8.
  • [23] Hagiwara Y, Faust O. Nonlinear analysis of coronary artery disease, myocardial infarction, and normal ECG signals. J Mech Med Biol 2017;17(7):1740006 (22 pp.).
  • [24] Kannathal N, Lim CM, Acharya UR, Sadasivan PK. Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed 2005;80:187–94.
  • [25] Sharma R, Pachori RB, Acharya UR. Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 2015;17:669–91.
  • [26] Hagiwara Y, Sudarshan VK, Leong SS, Vijaynanthan A, Ng KH. Application of entropies for automated diagnosis of abnormalities in ultrasound images: a review. J Mech Med Biol 2017;17(7):1740012 (21 pp.).
  • [27] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 2000;101(23): E215–20.
  • [28] Student. The probable error of a mean. Biometrika 1908;6 (1):1–25.
  • [29] Martis RJ, Acharya UR, Adeli H. Current methods in electrocardiogram characterization. Comput Biol Med 2014;48:133–49.
  • [30] Velasco MB, Weng B, Barner KE. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput Biol Med 2008;38:1–13.
  • [31] Addison PS. Wavelet transforms and the ECG: a review. Physiol Meas 2005;26:R155–99.
  • [32] Kabir A, Shahnaz C. Comparison of ECG signal denoising algorithms in EMD and wavelet domains. Int J Rec Res Appl Stud 2012;11(3):499–516.
  • [33] Luo S, Johnson P. A review of electrocardiogram filtering. J Electrocardiol 2010;43(6):486–96.
  • [34] Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond 1998;454:903–95.
  • [35] Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng 1985;32(3):230–6.
  • [36] Singh V, Tiwari A. Optimal selection of wavelet basis function applied to ECG signal denoising. Digit Sign Process 2006;16(3):275–87.
  • [37] Shannon CE. A mathematical theory of communication. Bell Syst Techn J 1948;27(3):379–423.
  • [38] Tsallis C. Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys 1988;52(1–2):479–87.
  • [39] Renyi A. On measures of entropy and information. Fourth Berkeley Symposium. 1961. pp. 547–61.
  • [40] Nikias CL, Mendel JM. Higher-order spectral analysis. IEEE Sign Process Mag 1993;10(3):10–37.
  • [41] Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, Schürmann M, et al. Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Meth 2001;105:65–75.
  • [42] Han J, Dong F, Xu YY. Entropy feature extraction on flow pattern of gas/liquid two-phase flow based on cross-sectional measurement. J Phys: Conf Ser 2009;147: 012041.
  • [43] Stein C. Estimation of the mean of a multivariate normal distribution. Ann Stat 1981;9(6):1135–51.
  • [44] Zbilut JP, Thomasson N, Webber CL. Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Med Eng Phys 2002;24 (1):53–60.
  • [45] Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 2002;88(17):174102.
  • [46] Kolmogorov AN. New metric invariant of transitive dynamical systems and endomrphisms of Lebesgue spaces. Doklady Russ Acad Sci 1958;119:861–4.
  • [47] Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 1991;88:2297–301.
  • [48] Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol – Heart Circ Physiol 2000;278(6):2039–49.
  • [49] Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 2002;89(6):068102.
  • [50] Wu SD, Wu CW, Lee KY, Lin SG. Modified multiscale entropy for short-term time series analysis. Physica A 2013;392:5865–73.
  • [51] Kosko B. Fuzzy entropy and conditioning. Inf Sci 1986;40 (2):165–74.
  • [52] Acharya UR, Faust O, Sree V, Swapna G, Martis RJ, Kadri NA, et al. Linear and nonlinear analysis of normal and CAD-affected heart rate signals. Comput Meth Programs Biomed 2014;113:55–68.
  • [53] Zadeh LA. Fuzzy sets. Inf Control 1965;8:338–53.
  • [54] Chen W, Wang Z, Xie H, Yu W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neural Syst Rehabilit Eng 2007;15(2):266–72.
  • [55] Wilcoxon F. Individuals comparisons by ranking methods. Biometr Bull 1945;1(6):80–3.
  • [56] Egan JP. Signal detection theory and ROC analysis. Series in cognition and perception. New York: Academic Press; 1975.
  • [57] An S, Hu Q, Yu D. Fuzzy entropy based max-relevancy and min-redundancy feature selection. IEEE International Conference on Granular Computing; 2008.
  • [58] Bhattacharyya A. On a measure of divergence between two statistical populations defined by their probability distribution. Bull Calcutta Math Soc 1943;35:99–109.
  • [59] Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: John Wiley and Sons; 2001.
  • [60] Devroye LP, Wagner TJ. Distribution-free performance bounds for potential function rules. IEEE Trans Inf Theory 1979;25(5):601–4.
  • [61] Cortes C, Vapnik V. Support vector networks. Mach Learn 1995;20:273–97.
  • [62] Spechr DF, Donald F. Probabilistic neural networks. Neural Netw 1990;3(1):109–18.
  • [63] Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967;13(1):21–7.
  • [64] Khan A, Farooq H. Principal component analysis-linear discriminant analysis feature extractor for pattern recognition. Int J Comput Sci 2011;8:267–70.
  • [65] Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. Monterey, CA: Wadsworth and Brooks/Cole Advanced Books and Software; 1984.
  • [66] Smola AJ, Schölkopf B, Müller KR. The connection between regularization operators and support vector kernels. Neural Netw 1998;11:637–49.
  • [67] Song YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry 2015;27(2):130–5.
  • [68] Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 2002;23(1):23–6.
  • [69] Acharya UR, Kannathal N, Krishnan SM. Comprehensive analysis of cardiac health using heart rate signals. Physiol Meas 2004;25(5).
  • [70] Acharya UR, Kannathal N, Lee MH, Leong MY. Study of heart rate variability signals at sitting and lying postures. J Bodyw Mov Ther 2005;9(2):134–41.
  • [71] Kumar M, Pachori RB, Acharya UR. Use of accumulated entropies for automated detection of congestive heart failure in flexible analytic wavelet transform framework based on short-term HRV signals. Entropy 2017;19(3):92.
  • [72] Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Muhammad A, et al. Application of stacked convolutional and long-short term memory network for accurate identification of CAD ECG signals. Comput Biol Med 2018;94:19–26.
  • [73] Acharya UR, Raghavendra U, Fujita H, Hagiwara H, Koh JEW, Sudarshan VK, et al. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol Med 2016;79:250–8.
  • [74] Acharya UR, Mookiah MRK, Koh JEW, Tan JH, Bhandary SV, Rao AK, et al. Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index. Comput Biol Med 2016;75:54–62.
  • [75] Acharya UR, Fujita H, Bhat S, Koh JEW, Muhammad A, Ghista DN, et al. Automated diagnosis of diabetes using entropies and diabetic index. J Mech Med Biol 2016;16 (1):1640008.
  • [76] Yuvaraj R, Acharya UR, Hagiwara Y. A novel Parkinson's disease diagnosis index using higher-order spectra features in EEG signals. Neural Comput Appl 2016;1–11.
  • [77] Sridhar C, Acharya UR, Fujita H, Bairy GM. Automated diagnosis of coronary artery disease using nonlinear features extracted from ECG signals. IEEE International Conference on Systems, Man, and Cybernetics; 2016.
  • [78] Lee HG, Noh KY, Ryu KH. Mining biosignal data: coronary artery disease diagnosis using linear and nonlinear features of HRV. Pacific-Asia Conference on Knowledge Discovery and Data Mining: Emerging Technologies in Knowledge Discovery and Data Mining. 2007. pp. 218–28.
  • [79] Dua S, Du X, Sree VS, Ahamed VIT. Novel classification of coronary artery disease using heart rate variability analysis. J Mech Med Biol 2012;12(4):1240017 (19 pp.).
  • [80] Poddar MG, Kumar V, Sharma YP. Automated diagnosis of coronary artery diseased patients by heart rate variability analysis using linear and non-linear methods. J Med Eng Technol 2015;39(6):331–41.
  • [81] Kumar M, Pachori RB, Acharya UR. An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals. Expert Syst Appl 2016;63:165–72.
  • [82] Dolatabadi AD, Khadem SEZ, Asl BM. Automated diagnosis of coronary artery disease (CAD) patients using optimized SVM. Comput Methods Programs Biomed 2017;138:117–26.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b742fbc8-0257-4726-8444-75f2c4f753c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.